# Brandon Samples - University of Georgia VIGRE Algebra Group

## Contact Details

NameBrandon Samples |
||

AffiliationUniversity of Georgia VIGRE Algebra Group |
||

Location |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesMathematics - Representation Theory (2) Mathematics - Group Theory (2) Mathematics - Number Theory (1) |

## Publications Authored By Brandon Samples

**Authors:**Brian D. Boe

^{1}, Brian Bonsignore

^{2}, Theresa Brons

^{3}, Jon F. Carlson

^{4}, Leonard Chastkofsky

^{5}, Christopher M. Drupieski

^{6}, Niles Johnson

^{7}, Daniel K. Nakano

^{8}, Wenjing Li

^{9}, Phong Thanh Luu

^{10}, Tiago Macedo

^{11}, Nham Vo Ngo

^{12}, Brandon L. Samples

^{13}, Andrew J. Talian

^{14}, Lisa Townsley

^{15}, Benjamin J. Wyser

^{16}

**Affiliations:**

^{1}University of Georgia VIGRE Algebra Group,

^{2}University of Georgia VIGRE Algebra Group,

^{3}University of Georgia VIGRE Algebra Group,

^{4}University of Georgia VIGRE Algebra Group,

^{5}University of Georgia VIGRE Algebra Group,

^{6}University of Georgia VIGRE Algebra Group,

^{7}University of Georgia VIGRE Algebra Group,

^{8}University of Georgia VIGRE Algebra Group,

^{9}University of Georgia VIGRE Algebra Group,

^{10}University of Georgia VIGRE Algebra Group,

^{11}University of Georgia VIGRE Algebra Group,

^{12}University of Georgia VIGRE Algebra Group,

^{13}University of Georgia VIGRE Algebra Group,

^{14}University of Georgia VIGRE Algebra Group,

^{15}University of Georgia VIGRE Algebra Group,

^{16}University of Georgia VIGRE Algebra Group

Let $G$ be a simple, simply-connected algebraic group defined over $\mathbb{F}_p$. Given a power $q = p^r$ of $p$, let $G(\mathbb{F}_q) \subset G$ be the subgroup of $\mathbb{F}_q$-rational points. Let $L(\lambda)$ be the simple rational $G$-module of highest weight $\lambda$. Read More

**Authors:**Brian D. Boe

^{1}, Adrian M. Brunyate

^{2}, Jon F. Carlson

^{3}, Leonard Chastkofsky

^{4}, Christopher M. Drupieski

^{5}, Niles Johnson

^{6}, Benjamin F. Jones

^{7}, Wenjing Li

^{8}, Daniel K. Nakano

^{9}, Nham Vo Ngo

^{10}, Duc Duy Nguyen

^{11}, Brandon L. Samples

^{12}, Andrew J. Talian

^{13}, Lisa Townsley

^{14}, Benjamin J. Wyser

^{15}

**Affiliations:**

^{1}University of Georgia VIGRE Algebra Group,

^{2}University of Georgia VIGRE Algebra Group,

^{3}University of Georgia VIGRE Algebra Group,

^{4}University of Georgia VIGRE Algebra Group,

^{5}University of Georgia VIGRE Algebra Group,

^{6}University of Georgia VIGRE Algebra Group,

^{7}University of Georgia VIGRE Algebra Group,

^{8}University of Georgia VIGRE Algebra Group,

^{9}University of Georgia VIGRE Algebra Group,

^{10}University of Georgia VIGRE Algebra Group,

^{11}University of Georgia VIGRE Algebra Group,

^{12}University of Georgia VIGRE Algebra Group,

^{13}University of Georgia VIGRE Algebra Group,

^{14}University of Georgia VIGRE Algebra Group,

^{15}University of Georgia VIGRE Algebra Group

Let $k$ be an algebraically closed field of characteristic $p > 0$, and let $G$ be a simple, simply connected algebraic group defined over $\mathbb{F}_p$. Given $r \geq 1$, set $q=p^r$, and let $G(\mathbb{F}_q)$ be the corresponding finite Chevalley group. In this paper we investigate the structure of the first cohomology group $H^1(G(\mathbb{F}_q),L(\lambda))$ where $L(\lambda)$ is the simple $G$-module of highest weight $\lambda$. Read More

We consider a generalization of the Frobenius Problem where the object of interest is the greatest integer which has exactly $j$ representations by a collection of positive relatively prime integers. We prove an analogue of a theorem of Brauer and Shockley and show how it can be used for computation. Read More