# B. L. Young - Daya Bay Collaboration

## Contact Details

NameB. L. Young |
||

AffiliationDaya Bay Collaboration |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Experiment (24) Physics - Instrumentation and Detectors (19) Mathematics - Combinatorics (11) Cosmology and Nongalactic Astrophysics (10) Nuclear Experiment (7) Instrumentation and Methods for Astrophysics (5) High Energy Physics - Phenomenology (5) Mathematics - Algebraic Geometry (4) Mathematics - Representation Theory (3) Physics - Materials Science (2) Mathematics - Analysis of PDEs (2) High Energy Astrophysical Phenomena (2) Mathematics - Mathematical Physics (2) High Energy Physics - Theory (2) Mathematics - Probability (2) Mathematics - Algebraic Topology (2) Mathematical Physics (2) Astrophysics of Galaxies (1) Physics - Superconductivity (1) Mathematics - Group Theory (1) Computer Science - Robotics (1) Mathematics - Spectral Theory (1) Physics - Mesoscopic Systems and Quantum Hall Effect (1) |

## Publications Authored By B. L. Young

The equivariant Kazhdan-Lusztig polynomial of a braid matroid may be interpreted as the intersection cohomology of a certain partial compactification of the configuration space of n distinct labeled points in the plane, regarded as a graded representation of the symmetric group. We show that, in fixed cohomological degree, this sequence of representations of symmetric groups naturally admits the structure of an FS-module, and that the dual FS^op-module is finitely generated. Using the work of Sam and Snowden, we give an asymptotic formula for the dimensions of these representations and obtain restrictions on which irreducible representations can appear in their decomposition. Read More

**Authors:**F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. B. Hsiung, B. Z. Hu, T. Hu, E. C. Huang, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, K. L. Jen, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, A. Khan, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. M. Qiu, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, P. Stoler, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, Y. Z. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, C. C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, R. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2. Read More

This paper presents a system for mission planning for an autonomous underwater vehicle in time-varying ocean currents. The mission planning system is designed for the AUV "SLOCUM Glider" to collect oceanographic data along the Newfoundland and Labrador Shelf. The data will be used in conjunction with a numerical ocean model currently under development by the Department of Fisheries and Oceans Canada. Read More

We give a bijective proof of Macdonald's reduced word identity using pipe dreams and Little's bumping algorithm. This proof extends to a principal specialization due to Fomin and Stanley. Such a proof has been sought for over 20 years. Read More

We report on various results, conjectures, and open problems related to Kazhdan-Lusztig polynomials of matroids. We focus on conjectures about the roots of these polynomials, all of which appear here for the first time. Read More

We introduce the DM Radio, a dual search for axion and hidden photon dark matter using a tunable superconducting lumped-element resonator. We discuss the prototype DM Radio Pathfinder experiment, which will probe hidden photons in the 500 peV (100 kHz)-50 neV (10 MHz) mass range. We detail the design of the various components: the LC resonant detector, the resonant frequency tuning procedure, the differential SQUID readout circuit, the shielding, and the cryogenic mounting structure. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Read More

**Authors:**R. Agnese, A. J. Anderson, T. Aramaki, I. Arnquist, W. Baker, D. Barker, R. Basu Thakur, D. A. Bauer, A. Borgland, M. A. Bowles, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, R. Calkins, C. Cartaro, D. G. CerdeÃ±o, H. Chagani, Y. Chen, J. Cooley, B. Cornell, P. Cushman, M. Daal, P. C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, M. Fritts, G. Gerbier, M. Ghaith, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, T. Hofer, D. Holmgren, Z. Hong, E. Hoppe, L. Hsu, M. E. Huber, V. Iyer, D. Jardin, A. Jastram, M. H. Kelsey, A. Kennedy, A. Kubik, N. A. Kurinsky, A. Leder, B. Loer, E. Lopez Asamar, P. Lukens, R. Mahapatra, V. Mandic, N. Mast, N. Mirabolfathi, R. A. Moffatt, J. D. Morales Mendoza, J. L. Orrell, S. M. Oser, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, S. Poudel, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, A. Roberts, A. E. Robinson, H. E. Rogers, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, B. Serfass, D. Speller, M. Stein, J. Street, H. A. Tanaka, D. Toback, R. Underwood, A. N. Villano, B. von Krosigk, B. Welliver, J. S. Wilson, D. H. Wright, S. Yellin, J. J. Yen, B. A. Young, X. Zhang, X. Zhao

SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. Read More

**Authors:**F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

The disappearance of reactor $\bar{\nu}_e$ observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion $\sigma_\text{rel}$. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of $\bar{\nu}_e$ acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. Read More

**Authors:**F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. Read More

**Authors:**The Daya Bay collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

**Category:**High Energy Physics - Experiment

This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. Read More

**Authors:**Daya Bay, MINOS Collaborations, :, P. Adamson, F. P. An, I. Anghel, A. Aurisano, A. B. Balantekin, H. R. Band, G. Barr, M. Bishai, A. Blake, S. Blyth G. J. Bock, D. Bogert, D. Cao, G. F. Cao, J. Cao, S. V. Cao, T. J. Carroll, C. M. Castromonte, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, R. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, J. -H. Cheng, Y. P. Chen, Z. K. Cheng, J. J. Cherwinka, S. Childress, M. C. Chu, A. Chukanov, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. P. Cummings, J. de Arcos, S. De Rijck, Z. Y. Deng, A. V. Devan, N. E. Devenish, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. Gill, R. A. Gomes, M. Gonchar, G. H. Gong, H. Gong, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, M. Grassi, K. Grzelak, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, A. Habig, R. W. Hackenburg, S. R. Hahn, R. Han, S. Hans, J. Hartnell, R. Hatcher, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, A. Holin, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, J. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, J. Hylen, G. M. Irwin, Z. Isvan, D. E. Jaffe, P. Jaffke, C. James, K. L. Jen, D. Jensen, S. Jetter, X. L. Ji, X. P. Ji, J. B. Jiao, R. A. Johnson, J. K. de Jong, J. Joshi, T. Kafka, L. Kang, S. M. S. Kasahara, S. H. Kettell, S. Kohn, G. Koizumi, M. Kordosky, M. Kramer, A. Kreymer, 1 K. K. Kwan, M. W. Kwok, T. Kwok, K. Lang, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling J. M. Link, P. J. Litchfield, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, P. Lucas, K. B. Luk, Z. Lv, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, Y. Malyshkin, W. A. Mann, M. L. Marshak, D. A. Martinez Caicedo, N. Mayer, K. T. McDonald, C. McGivern, R. D. McKeown, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, I. Mitchell, M. Mooney, C. D. Moore, L. Mualem, J. Musser, Y. Nakajima, D. Naples, J. Napolitano, D. Naumov, E. Naumova, J. K. Nelson, H. B. Newman, H. Y. Ngai, R. J. Nichol, Z. Ning, A. Nowak, J. O'Connor, J. P. Ochoa-Ricoux, A. Olshevskiy, M. Orchanian, R., R. B. Pahlka, J. Paley, H. -R. Pan, J. Park, R. B. Patterson, S. Patton, G. Pawloski, V. Pec, J. C. Peng, A. Perch, M. M. Pfutzner, D. D. Phan, S. Phan-Budd, L. Pinsky, R. K. Plunkett, N. Poonthottathil, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, X. Qiu, A. Radovic, N. Raper, B. Rebel, J. Ren, C. Rosenfeld, R. Rosero, B. Roskovec, X. C. Ruan, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, S. Moed Sher, A. Sousa, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, R. L. Talaga, W. Tang, D. Taychenachev, J. Thomas, M. A. Thomson, X. Tian A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, K. Treskov, K. V. Tsang, C. E. Tull, G. Tzanakos, J. Urheim, P. Vahle, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, R. C. Webb, A. Weber, H. Y. Wei, L. J. Wen, K. Whisnant, C. White, L. Whitehead L. H. Whitehead, T. Wise, S. G. Wojcicki, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye., Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. ZhanC. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

**Category:**High Energy Physics - Experiment

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the LSND and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Read More

We define the equivariant Kazhdan-Lusztig polynomial of a matroid equipped with a group of symmetries, generalizing the nonequivariant case. We compute this invariant for arbitrary uniform matroids and for braid matroids of small rank. Read More

The topological vertex is a universal series which can be regarded as an object in combinatorics, representation theory, geometry, or physics. It encodes the combinatorics of 3D partitions, the action of vertex operators on Fock space, the Donaldson-Thomas theory of toric Calabi-Yau threefolds, or the open string partition function of $\mathbb{C}^3$. We prove several identities in which a sum over terms involving the topological vertex is expressed as a closed formula, often a product of simple terms, closely related to Fourier expansions of Jacobi forms. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. J. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, T. Konstantin, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This article reports an improved independent measurement of neutrino mixing angle $\theta_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $\beta$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. Read More

We give a recursive algorithm for computing the Orlik-Terao algebra of the Coxeter arrangement of type A_{n-1} as a graded representation of S_n, and we give a conjectural description of this representation in terms of the cohomology of the configuration space of n points in SU(2) modulo translation. We also give a version of this conjecture for more general graphical arrangements. Read More

After considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on the Earth is applied to some other spallation neutron sources, and the total event numbers of supernova neutrinos observed through different reactions channels are given. Read More

Let $\mathcal{M}$ be the moduli space of rank 2 stable torsion free sheaves with Chern classes $c_i$ on a smooth 3-fold $X$. When $X$ is toric with torus $T$, we describe the $T$-fixed locus of the moduli space. Connected components of $\mathcal{M}^T$ with constant reflexive hulls are isomorphic to products of $\mathbb{P}^1$. Read More

**Authors:**SuperCDMS Collaboration, R. Agnese, A. J. Anderson, T. Aramaki, M. Asai, W. Baker, D. Balakishiyeva, D. Barker, R. Basu Thakur, D. A. Bauer, J. Billard, A. Borgland, M. A. Bowles, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, R. Calkins, D. G. Cerdeno, H. Chagani, Y. Chen, J. Cooley, B. Cornell, P. Cushman, M. Daal, P. C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, M. Ghaith, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, D. Jardin, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, A. Kennedy, A. Leder, B. Loer, E. Lopez Asamar, P. Lukens, R. Mahapatra, V. Mandic, N. Mast, N. Mirabolfathi, R. A. Moffatt, J. D. Morales Mendoza, S. M. Oser, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, Y. Ricci, A. Roberts, H. E. Rogers, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, S. Scorza, B. Serfass, B. Shank, D. Speller, D. Toback, R. Underwood, S. Upadhyayula, A. N. Villano, B. Welliver, J. S. Wilson, D. H. Wright, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. Read More

We study the existence of Neumann eigenfunctions which do not change sign on the boundary of some special domains. We show that eigenfunctions which are strictly positive on the boundary exist on regular polygons with at least 5 sides, while on equilateral triangles and cubes it is not even possible to find an eigenfunction which is nonnegative on the boundary. We use analytic methods combined with symmetry arguments to prove the result for polygons with six or more sides. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, J. Dove, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, K. Y. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. Read More

**Authors:**F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, D. Cao, G. F. Cao, J. Cao, R. Carr, W. R. Cen, W. T. Chan, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Y. Chen, H. S. Chen, M. J. Chen, Q. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, S. Chidzik, K. Chow, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, L. Dong, J. Dove, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, M. Grassi, L. S. Greenler, W. Q. Gu, M. Y. Guan, R. P. Guo, X. H. Guo, R. W. Hackenburg, R. L. Hahn, R. Han, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, A. Higuera, P. Hinrichs, T. H. Ho, M. Hoff, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Z. Huang, H. X. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, J. Joseph, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, C. Li, D. J. Li, F. Li, G. S. Li, J. Li, N. Y. Li, Q. J. Li, S. F. Li, S. C. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Y. F. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. X. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. Liu, S. S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, J. S. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, D. Mohapatra, J. Monari Kebwaro, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, A. Pagac, H. -R. Pan, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, W. R. Sands III, B. Seilhan, B. B. Shao, K. Shih, W. Y. Song, H. Steiner, P. Stoler, M. Stuart, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, W. Tang, X. Tang, D. Taychenachev, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, W. W. Wang, X. T. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, S. C. F. Wong, E. Worcester, F. F. Wu, Q. Wu, D. M. Xia, J. K. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Y. Xu, J. L. Xu, J. Xu, W. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, G. Y. Yu, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, F. H. Zhang, H. H. Zhang, J. W. Zhang, K. Zhang, Q. X. Zhang, Q. M. Zhang, S. H. Zhang, X. T. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, Z. Y. Zhou, H. L. Zhuang, S. Zimmerman, J. H. Zou

The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, H. Themann, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6. Read More

Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces, for the first time, a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Read More

We compute the Kazhdan-Lusztig polynomial of the uniform matroid of rank n-1 on n elements by proving that the i-th coefficient of is equal to the number of ways to choose i non-intersecting chords in an (n-i+1)-gon. We also show that the corresponding intersection cohomology group is isomorphic to the irreducible representation of the symmetric group associated to the partition [n-2i,2,.. Read More

**Authors:**R. Agnese, A. J. Anderson, M. Asai, D. Balakishiyeva, D. Barker, R. Basu Thakur, D. A. Bauer, J. Billard, A. Borgland, M. A. Bowles, D. Brandt, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, R. Calkins, D. G. CerdeÃ±o, H. Chagani, Y. Chen, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, P. C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, S. A. Hertel, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, D. Jardin, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, A. Kennedy, M. Kiveni, K. Koch, A. Leder, B. Loer, E. Lopez Asamar, P. Lukens, R. Mahapatra, V. Mandic, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, S. M. Oser, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, Y. Ricci, H. E. Rogers, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, S. Scorza, B. Serfass, B. Shank, D. Speller, D. Toback, S. Upadhyayula, A. N. Villano, B. Welliver, J. S. Wilson, D. H. Wright, X. Yang, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

CDMS II data from the 5-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector WIMP-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to $\sim$5 keV, to increase sensitivity near a WIMP mass of 8 GeV/$c^2$. Read More

**Authors:**K. Schneck, B. Cabrera, D. G. Cerdeno, V. Mandic, H. E. Rogers, R. Agnese, A. J. Anderson, M. Asai, D. Balakishiyeva, D. Barker, R. Basu Thakur, D. A. Bauer, J. Billard, A. Borgland, D. Brandt, P. L. Brink, R. Bunker, D. O. Caldwell, R. Calkins, H. Chagani, Y. Chen, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, P. C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, D. M. Jardin, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, A. Kennedy, A. Leder, B. Loer, E. Lopez Asamar, P. Lukens, R. Mahapatra, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, J. D. Morales Mendoza, S. M. Oser, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, Y. Ricci, A. Roberts, T. Saab, B. Sadoulet, J. Sander, R. W. Schnee, S. Scorza, B. Serfass, B. Shank, D. Speller, D. Toback, S. Upadhyayula, A. N. Villano, B. Welliver, J. S. Wilson, D. H. Wright, X. Yang, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. Read More

It has been realized that the shock wave effects play an important role in neutrino oscillations during the supernova explosion. In recent years, with the development of simulations about supernova explosion, we have a better understanding about the density profiles and the shock waves in supernovae than before. It has been shown that the appearance of shock waves not only varies with time, but is also affected by the mass of the supernova. Read More

We report on thin-film processing improvements in the fabrication of superconducting quasiparticle-trap-assisted electrothermal-feedback transition-edge sensors (QETs) used in the design of Cryogenic Dark Matter Search (CDMS) detectors. The work was performed as part of a detector upgrade project that included optimization of a new confocal sputtering system and development of etch recipes compatible with patterning 40 nm-thick, mixed-phase W films deposited on 300-600 nm-thick, patterned Al. We found that our standard exothermic Al wet etch recipes provided inadequate W/Al interfaces and led to poor device performance. Read More

**Authors:**SuperCDMS Collaboration, R. Agnese, A. J. Anderson, D. Balakishiyeva, R. Basu Thakur, D. A. Bauer, J. Billard, A. Borgland, M. A. Bowles, D. Brandt, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, D. G. Cerdeno, H. Chagani, Y. Chen, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, P. C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, M. Fritts, G. L. Godfrey, S. R. Golwala, M. Graham, J. Hall, H. R. Harris, S. A. Hertel, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, A. Kennedy, M. Kiveni, K. Koch, A. Leder, B. Loer, E. Lopez Asamar, R. Mahapatra, V. Mandic, C. Martinez, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, D. C. Moore, R. H. Nelson, S. M. Oser, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, Y. Ricci, H. E. Rogers, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, S. Scorza, B. Serfass, B. Shank, D. Speller, S. Upadhyayula, A. N. Villano, B. Welliver, D. H. Wright, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

We report on the results of a search for a Weakly Interacting Massive Particle (WIMP) signal in low-energy data of the Cryogenic Dark Matter Search (CDMS~II) experiment using a maximum likelihood analysis. A background model is constructed using GEANT4 to simulate the surface-event background from $^{210}$Pb decay-chain events, while using independent calibration data to model the gamma background. Fitting this background model to the data results in no statistically significant WIMP component. Read More

We give an algorithmic-bijective proof of Macdonald's reduced word identity in the theory of Schubert polynomials, in the special case where the permutation is dominant. Our bijection uses a novel application of David Little's generalized bumping algorithm. We also describe a Markov growth process for an associated probability distribution on reduced words. Read More

**Authors:**R. Agnese, A. J. Anderson, D. Balakishiyeva, R. Basu Thakur, D. A. Bauer, J. Billard, A. Borgland, M. A. Bowles, D. Brandt, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, D. G. Cerdeno, H. Chagani, Y. Chen, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, P. C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, S. A. Hertel, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, A. Kennedy, M. Kiveni, K. Koch, A. Leder, B. Loer, E. Lopez Asamar, R. Mahapatra, V. Mandic, C. Martinez, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, D. C. Moore, H. Nelson, R. H. Nelson, R. W. Ogburn, K. Page, W. A. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, Y. Ricci, H. E. Rogers, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, S. Scorza, B. Serfass, B. Shank, D. Speller, S. Upadhyayula, A. N. Villano, B. Welliver, D. H. Wright, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

While the Standard Model of particle physics does not include free particles with fractional charge, experimental searches have not ruled out their existence. We report results from the Cryogenic Dark Matter Search (CDMS II) experiment that give the first direct-detection limits for cosmogenically-produced relativistic particles with electric charge lower than $e$/6. A search for tracks in the six stacked detectors of each of two of the CDMS II towers found no candidates, thereby excluding new parameter space for particles with electric charges between $e$/6 and $e$/200. Read More

We examine the phenomenon of Landau Damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson system (rVP) on the torus for initial data sufficiently close to a spatially uniform steady state. We find that if the steady state is regular enough (essentially in a Gevrey class of degree in a specified range) and that the deviation of the initial data from this steady state is small enough in a certain norm, the evolution of the system is such that its spatial density approaches a uniform constant value sub-exponentially fast (i.e. Read More

**Authors:**F. P. An

^{1}, A. B. Balantekin

^{2}, H. R. Band

^{3}, W. Beriguete

^{4}, M. Bishai

^{5}, S. Blyth

^{6}, I. Butorov

^{7}, G. F. Cao

^{8}, J. Cao

^{9}, Y. L. Chan

^{10}, J. F. Chang

^{11}, L. C. Chang

^{12}, Y. Chang

^{13}, C. Chasman

^{14}, H. Chen

^{15}, Q. Y. Chen

^{16}, S. M. Chen

^{17}, X. Chen

^{18}, X. Chen

^{19}, Y. X. Chen

^{20}, Y. Chen

^{21}, Y. P. Cheng

^{22}, J. J. Cherwinka

^{23}, M. C. Chu

^{24}, J. P. Cummings

^{25}, J. de Arcos

^{26}, Z. Y. Deng

^{27}, Y. Y. Ding

^{28}, M. V. Diwan

^{29}, E. Draeger

^{30}, X. F. Du

^{31}, D. A. Dwyer

^{32}, W. R. Edwards

^{33}, S. R. Ely

^{34}, J. Y. Fu

^{35}, L. Q. Ge

^{36}, R. Gill

^{37}, M. Gonchar

^{38}, G. H. Gong

^{39}, H. Gong

^{40}, M. Grassi

^{41}, W. Q. Gu

^{42}, M. Y. Guan

^{43}, X. H. Guo

^{44}, R. W. Hackenburg

^{45}, G. H. Han

^{46}, S. Hans

^{47}, M. He

^{48}, K. M. Heeger

^{49}, Y. K. Heng

^{50}, P. Hinrichs

^{51}, Y. K. Hor

^{52}, Y. B. Hsiung

^{53}, B. Z. Hu

^{54}, L. M. Hu

^{55}, L. J. Hu

^{56}, T. Hu

^{57}, W. Hu

^{58}, E. C. Huang

^{59}, H. Huang

^{60}, X. T. Huang

^{61}, P. Huber

^{62}, G. Hussain

^{63}, Z. Isvan

^{64}, D. E. Jaffe

^{65}, P. Jaffke

^{66}, K. L. Jen

^{67}, S. Jetter

^{68}, X. P. Ji

^{69}, X. L. Ji

^{70}, H. J. Jiang

^{71}, J. B. Jiao

^{72}, R. A. Johnson

^{73}, L. Kang

^{74}, S. H. Kettell

^{75}, M. Kramer

^{76}, K. K. Kwan

^{77}, M. W. Kwok

^{78}, T. Kwok

^{79}, W. C. Lai

^{80}, K. Lau

^{81}, L. Lebanowski

^{82}, J. Lee

^{83}, R. T. Lei

^{84}, R. Leitner

^{85}, A. Leung

^{86}, J. K. C. Leung

^{87}, C. A. Lewis

^{88}, D. J. Li

^{89}, F. Li

^{90}, G. S. Li

^{91}, Q. J. Li

^{92}, W. D. Li

^{93}, X. N. Li

^{94}, X. Q. Li

^{95}, Y. F. Li

^{96}, Z. B. Li

^{97}, H. Liang

^{98}, C. J. Lin

^{99}, G. L. Lin

^{100}, P. Y. Lin

^{101}, S. K. Lin

^{102}, Y. C. Lin

^{103}, J. J. Ling

^{104}, J. M. Link

^{105}, L. Littenberg

^{106}, B. R. Littlejohn

^{107}, D. W. Liu

^{108}, H. Liu

^{109}, J. L. Liu

^{110}, J. C. Liu

^{111}, S. S. Liu

^{112}, Y. B. Liu

^{113}, C. Lu

^{114}, H. Q. Lu

^{115}, K. B. Luk

^{116}, Q. M. Ma

^{117}, X. Y. Ma

^{118}, X. B. Ma

^{119}, Y. Q. Ma

^{120}, K. T. McDonald

^{121}, M. C. McFarlane

^{122}, R. D. McKeown

^{123}, Y. Meng

^{124}, I. Mitchell

^{125}, J. Monari Kebwaro

^{126}, Y. Nakajima

^{127}, J. Napolitano

^{128}, D. Naumov

^{129}, E. Naumova

^{130}, I. Nemchenok

^{131}, H. Y. Ngai

^{132}, Z. Ning

^{133}, J. P. Ochoa-Ricoux

^{134}, A. Olshevski

^{135}, S. Patton

^{136}, V. Pec

^{137}, J. C. Peng

^{138}, L. E. Piilonen

^{139}, L. Pinsky

^{140}, C. S. J. Pun

^{141}, F. Z. Qi

^{142}, M. Qi

^{143}, X. Qian

^{144}, N. Raper

^{145}, B. Ren

^{146}, J. Ren

^{147}, R. Rosero

^{148}, B. Roskovec

^{149}, X. C. Ruan

^{150}, B. B. Shao

^{151}, H. Steiner

^{152}, G. X. Sun

^{153}, J. L. Sun

^{154}, Y. H. Tam

^{155}, X. Tang

^{156}, H. Themann

^{157}, K. V. Tsang

^{158}, R. H. M. Tsang

^{159}, C. E. Tull

^{160}, Y. C. Tung

^{161}, B. Viren

^{162}, V. Vorobel

^{163}, C. H. Wang

^{164}, L. S. Wang

^{165}, L. Y. Wang

^{166}, M. Wang

^{167}, N. Y. Wang

^{168}, R. G. Wang

^{169}, W. Wang

^{170}, W. W. Wang

^{171}, X. Wang

^{172}, Y. F. Wang

^{173}, Z. Wang

^{174}, Z. Wang

^{175}, Z. M. Wang

^{176}, D. M. Webber

^{177}, H. Y. Wei

^{178}, Y. D. Wei

^{179}, L. J. Wen

^{180}, K. Whisnant

^{181}, C. G. White

^{182}, L. Whitehead

^{183}, T. Wise

^{184}, H. L. H. Wong

^{185}, S. C. F. Wong

^{186}, E. Worcester

^{187}, Q. Wu

^{188}, D. M. Xia

^{189}, J. K. Xia

^{190}, X. Xia

^{191}, Z. Z. Xing

^{192}, J. Y. Xu

^{193}, J. L. Xu

^{194}, J. Xu

^{195}, Y. Xu

^{196}, T. Xue

^{197}, J. Yan

^{198}, C. C. Yang

^{199}, L. Yang

^{200}, M. S. Yang

^{201}, M. T. Yang

^{202}, M. Ye

^{203}, M. Yeh

^{204}, Y. S. Yeh

^{205}, B. L. Young

^{206}, G. Y. Yu

^{207}, J. Y. Yu

^{208}, Z. Y. Yu

^{209}, S. L. Zang

^{210}, B. Zeng

^{211}, L. Zhan

^{212}, C. Zhang

^{213}, F. H. Zhang

^{214}, J. W. Zhang

^{215}, Q. M. Zhang

^{216}, Q. Zhang

^{217}, S. H. Zhang

^{218}, Y. C. Zhang

^{219}, Y. M. Zhang

^{220}, Y. H. Zhang

^{221}, Y. X. Zhang

^{222}, Z. J. Zhang

^{223}, Z. Y. Zhang

^{224}, Z. P. Zhang

^{225}, J. Zhao

^{226}, Q. W. Zhao

^{227}, Y. Zhao

^{228}, Y. B. Zhao

^{229}, L. Zheng

^{230}, W. L. Zhong

^{231}, L. Zhou

^{232}, Z. Y. Zhou

^{233}, H. L. Zhuang

^{234}, J. H. Zou

^{235}

**Affiliations:**

^{1}Daya Bay Collaboration,

^{2}Daya Bay Collaboration,

^{3}Daya Bay Collaboration,

^{4}Daya Bay Collaboration,

^{5}Daya Bay Collaboration,

^{6}Daya Bay Collaboration,

^{7}Daya Bay Collaboration,

^{8}Daya Bay Collaboration,

^{9}Daya Bay Collaboration,

^{10}Daya Bay Collaboration,

^{11}Daya Bay Collaboration,

^{12}Daya Bay Collaboration,

^{13}Daya Bay Collaboration,

^{14}Daya Bay Collaboration,

^{15}Daya Bay Collaboration,

^{16}Daya Bay Collaboration,

^{17}Daya Bay Collaboration,

^{18}Daya Bay Collaboration,

^{19}Daya Bay Collaboration,

^{20}Daya Bay Collaboration,

^{21}Daya Bay Collaboration,

^{22}Daya Bay Collaboration,

^{23}Daya Bay Collaboration,

^{24}Daya Bay Collaboration,

^{25}Daya Bay Collaboration,

^{26}Daya Bay Collaboration,

^{27}Daya Bay Collaboration,

^{28}Daya Bay Collaboration,

^{29}Daya Bay Collaboration,

^{30}Daya Bay Collaboration,

^{31}Daya Bay Collaboration,

^{32}Daya Bay Collaboration,

^{33}Daya Bay Collaboration,

^{34}Daya Bay Collaboration,

^{35}Daya Bay Collaboration,

^{36}Daya Bay Collaboration,

^{37}Daya Bay Collaboration,

^{38}Daya Bay Collaboration,

^{39}Daya Bay Collaboration,

^{40}Daya Bay Collaboration,

^{41}Daya Bay Collaboration,

^{42}Daya Bay Collaboration,

^{43}Daya Bay Collaboration,

^{44}Daya Bay Collaboration,

^{45}Daya Bay Collaboration,

^{46}Daya Bay Collaboration,

^{47}Daya Bay Collaboration,

^{48}Daya Bay Collaboration,

^{49}Daya Bay Collaboration,

^{50}Daya Bay Collaboration,

^{51}Daya Bay Collaboration,

^{52}Daya Bay Collaboration,

^{53}Daya Bay Collaboration,

^{54}Daya Bay Collaboration,

^{55}Daya Bay Collaboration,

^{56}Daya Bay Collaboration,

^{57}Daya Bay Collaboration,

^{58}Daya Bay Collaboration,

^{59}Daya Bay Collaboration,

^{60}Daya Bay Collaboration,

^{61}Daya Bay Collaboration,

^{62}Daya Bay Collaboration,

^{63}Daya Bay Collaboration,

^{64}Daya Bay Collaboration,

^{65}Daya Bay Collaboration,

^{66}Daya Bay Collaboration,

^{67}Daya Bay Collaboration,

^{68}Daya Bay Collaboration,

^{69}Daya Bay Collaboration,

^{70}Daya Bay Collaboration,

^{71}Daya Bay Collaboration,

^{72}Daya Bay Collaboration,

^{73}Daya Bay Collaboration,

^{74}Daya Bay Collaboration,

^{75}Daya Bay Collaboration,

^{76}Daya Bay Collaboration,

^{77}Daya Bay Collaboration,

^{78}Daya Bay Collaboration,

^{79}Daya Bay Collaboration,

^{80}Daya Bay Collaboration,

^{81}Daya Bay Collaboration,

^{82}Daya Bay Collaboration,

^{83}Daya Bay Collaboration,

^{84}Daya Bay Collaboration,

^{85}Daya Bay Collaboration,

^{86}Daya Bay Collaboration,

^{87}Daya Bay Collaboration,

^{88}Daya Bay Collaboration,

^{89}Daya Bay Collaboration,

^{90}Daya Bay Collaboration,

^{91}Daya Bay Collaboration,

^{92}Daya Bay Collaboration,

^{93}Daya Bay Collaboration,

^{94}Daya Bay Collaboration,

^{95}Daya Bay Collaboration,

^{96}Daya Bay Collaboration,

^{97}Daya Bay Collaboration,

^{98}Daya Bay Collaboration,

^{99}Daya Bay Collaboration,

^{100}Daya Bay Collaboration,

^{101}Daya Bay Collaboration,

^{102}Daya Bay Collaboration,

^{103}Daya Bay Collaboration,

^{104}Daya Bay Collaboration,

^{105}Daya Bay Collaboration,

^{106}Daya Bay Collaboration,

^{107}Daya Bay Collaboration,

^{108}Daya Bay Collaboration,

^{109}Daya Bay Collaboration,

^{110}Daya Bay Collaboration,

^{111}Daya Bay Collaboration,

^{112}Daya Bay Collaboration,

^{113}Daya Bay Collaboration,

^{114}Daya Bay Collaboration,

^{115}Daya Bay Collaboration,

^{116}Daya Bay Collaboration,

^{117}Daya Bay Collaboration,

^{118}Daya Bay Collaboration,

^{119}Daya Bay Collaboration,

^{120}Daya Bay Collaboration,

^{121}Daya Bay Collaboration,

^{122}Daya Bay Collaboration,

^{123}Daya Bay Collaboration,

^{124}Daya Bay Collaboration,

^{125}Daya Bay Collaboration,

^{126}Daya Bay Collaboration,

^{127}Daya Bay Collaboration,

^{128}Daya Bay Collaboration,

^{129}Daya Bay Collaboration,

^{130}Daya Bay Collaboration,

^{131}Daya Bay Collaboration,

^{132}Daya Bay Collaboration,

^{133}Daya Bay Collaboration,

^{134}Daya Bay Collaboration,

^{135}Daya Bay Collaboration,

^{136}Daya Bay Collaboration,

^{137}Daya Bay Collaboration,

^{138}Daya Bay Collaboration,

^{139}Daya Bay Collaboration,

^{140}Daya Bay Collaboration,

^{141}Daya Bay Collaboration,

^{142}Daya Bay Collaboration,

^{143}Daya Bay Collaboration,

^{144}Daya Bay Collaboration,

^{145}Daya Bay Collaboration,

^{146}Daya Bay Collaboration,

^{147}Daya Bay Collaboration,

^{148}Daya Bay Collaboration,

^{149}Daya Bay Collaboration,

^{150}Daya Bay Collaboration,

^{151}Daya Bay Collaboration,

^{152}Daya Bay Collaboration,

^{153}Daya Bay Collaboration,

^{154}Daya Bay Collaboration,

^{155}Daya Bay Collaboration,

^{156}Daya Bay Collaboration,

^{157}Daya Bay Collaboration,

^{158}Daya Bay Collaboration,

^{159}Daya Bay Collaboration,

^{160}Daya Bay Collaboration,

^{161}Daya Bay Collaboration,

^{162}Daya Bay Collaboration,

^{163}Daya Bay Collaboration,

^{164}Daya Bay Collaboration,

^{165}Daya Bay Collaboration,

^{166}Daya Bay Collaboration,

^{167}Daya Bay Collaboration,

^{168}Daya Bay Collaboration,

^{169}Daya Bay Collaboration,

^{170}Daya Bay Collaboration,

^{171}Daya Bay Collaboration,

^{172}Daya Bay Collaboration,

^{173}Daya Bay Collaboration,

^{174}Daya Bay Collaboration,

^{175}Daya Bay Collaboration,

^{176}Daya Bay Collaboration,

^{177}Daya Bay Collaboration,

^{178}Daya Bay Collaboration,

^{179}Daya Bay Collaboration,

^{180}Daya Bay Collaboration,

^{181}Daya Bay Collaboration,

^{182}Daya Bay Collaboration,

^{183}Daya Bay Collaboration,

^{184}Daya Bay Collaboration,

^{185}Daya Bay Collaboration,

^{186}Daya Bay Collaboration,

^{187}Daya Bay Collaboration,

^{188}Daya Bay Collaboration,

^{189}Daya Bay Collaboration,

^{190}Daya Bay Collaboration,

^{191}Daya Bay Collaboration,

^{192}Daya Bay Collaboration,

^{193}Daya Bay Collaboration,

^{194}Daya Bay Collaboration,

^{195}Daya Bay Collaboration,

^{196}Daya Bay Collaboration,

^{197}Daya Bay Collaboration,

^{198}Daya Bay Collaboration,

^{199}Daya Bay Collaboration,

^{200}Daya Bay Collaboration,

^{201}Daya Bay Collaboration,

^{202}Daya Bay Collaboration,

^{203}Daya Bay Collaboration,

^{204}Daya Bay Collaboration,

^{205}Daya Bay Collaboration,

^{206}Daya Bay Collaboration,

^{207}Daya Bay Collaboration,

^{208}Daya Bay Collaboration,

^{209}Daya Bay Collaboration,

^{210}Daya Bay Collaboration,

^{211}Daya Bay Collaboration,

^{212}Daya Bay Collaboration,

^{213}Daya Bay Collaboration,

^{214}Daya Bay Collaboration,

^{215}Daya Bay Collaboration,

^{216}Daya Bay Collaboration,

^{217}Daya Bay Collaboration,

^{218}Daya Bay Collaboration,

^{219}Daya Bay Collaboration,

^{220}Daya Bay Collaboration,

^{221}Daya Bay Collaboration,

^{222}Daya Bay Collaboration,

^{223}Daya Bay Collaboration,

^{224}Daya Bay Collaboration,

^{225}Daya Bay Collaboration,

^{226}Daya Bay Collaboration,

^{227}Daya Bay Collaboration,

^{228}Daya Bay Collaboration,

^{229}Daya Bay Collaboration,

^{230}Daya Bay Collaboration,

^{231}Daya Bay Collaboration,

^{232}Daya Bay Collaboration,

^{233}Daya Bay Collaboration,

^{234}Daya Bay Collaboration,

^{235}Daya Bay Collaboration

**Category:**High Energy Physics - Experiment

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9~GW$_{\rm th}$ nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{\rm -3}~{\rm eV}^{2} < |\Delta m_{41}^{2}| < 0. Read More

We report new experimental studies to understand the physics of phonon sensors which utilize quasiparticle diffusion in thin aluminum films into tungsten transition-edge-sensors (TESs) operated at 35 mK. We show that basic TES physics and a simple physical model of the overlap region between the W and Al films in our devices enables us to accurately reproduce the experimentally observed pulse shapes from x-rays absorbed in the Al films. We further estimate quasiparticle loss in Al films using a simple diffusion equation approach. Read More

**Authors:**B. Shank, J. J. Yen, B. Cabrera, J. M. Kreikebaum, R. Moffatt, P. Redl, B. A. Young, P. L. Brink, M. Cherry, A. Tomada

We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Chen, Q. Y. Chen, S. M. Chen, X. Chen, X. Chen, Y. X. Chen, Y. Chen, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, J. Y. Fu, L. Q. Ge, R. Gill, M. Gonchar, G. H. Gong, H. Gong, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, G. H. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, W. C. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, Y. B. Liu, C. Lu, H. Q. Lu, K. -B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, Y. H. Tam, X. Tang, H. Themann, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. C. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, J. Y. Yu, Z. Y. Yu, S. L. Zang, B. Zeng, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, Q. Zhang, S. H. Zhang, Y. C. Zhang, Y. M. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the $\theta_{13}$ mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of $\theta_{13}$ measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2. Read More

We define an analog of David Little's algorithm for reduced words in type B, and investigate its main properties. In particular, we show that our algorithm preserves the recording tableau of Kra\'{s}kiewicz insertion, and that it provides a bijective realization of the Type B transition equations in Schubert calculus. Many other aspects of type A theory carry over to this new setting. Read More

**Authors:**R. Agnese, A. J. Anderson, M. Asai, D. Balakishiyeva, R. Basu Thakur, D. A. Bauer, J. Beaty, J. Billard, A. Borgland, M. A. Bowles, D. Brandt, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, D. G. Cerdeno, H. Chagani, Y. Chen, M. Cherry, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, D. DeVaney, P. C. F. Di Stefano, E. Do Couto E Silva, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, G. L. Godfrey, S. R. Golwala, J. Hall, S. Hansen, H. R. Harris, S. A. Hertel, B. A. Hines, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, S. Kenany, A. Kennedy, M. Kiveni, K. Koch, A. Leder, B. Loer, E. Lopez Asamar, R. Mahapatra, V. Mandic, C. Martinez, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, R. H. Nelson, L. Novak, K. Page, R. Partridge, M. Pepin, A. Phipps, M. Platt, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, R. W. Resch, Y. Ricci, M. Ruschman, T. Saab, B. Sadoulet, J. Sander, R. L. Schmitt, K. Schneck, R. W. Schnee, S. Scorza, D. N. Seitz, B. Serfass, B. Shank, D. Speller, A. Tomada, S. Upadhyayula, A. N. Villano, B. Welliver, D. H. Wright, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. Read More

We examine the phenomenon of Landau Damping in relativistic plasmas via a study of the relativistic Vlasov-Poisson system (both on the torus and on $\mathbb{R}^3$) linearized around a sufficiently nice, spatially uniform kinetic equilibrium. We find that exponential decay of spatial Fourier modes is impossible under modest symmetry assumptions. However, by assuming the equilibrium and initial data are sufficiently regular functions of velocity for a given wavevector (in particular that they exhibit a kind of Gevrey regularity), we show that it is possible for the mode associated to this wavevector to decay sub-exponentially if its magnitude exceeds a certain critical size. Read More

**Authors:**Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, G. F. Cao, J. Cao, R. Carr, Y. L. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, Y. Chen, Y. X. Chen, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, J. Y. Fu, L. Q. Ge, R. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, G. H. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, yk. Hor, Y. B. Hsiung, B. Z. Hu, L. J. Hu, L. M. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. S. Liu, Y. B. Liu, C. Lu, H. Q. Lu, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Xu, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, J. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

A measurement of the energy dependence of antineutrino disappearance at the Daya Bay Reactor Neutrino Experiment is reported. Electron antineutrinos ($\overline{\nu}_{e}$) from six $2.9$ GW$_{\rm th}$ reactors were detected with six detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls. Read More

**Authors:**R. Agnese, A. J. Anderson, M. Asai, D. Balakishiyeva, R. Basu Thakur, D. A. Bauer, J. Billard, A. Borgland, M. A. Bowles, D. Brandt, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, D. G. Cerdeno, H. Chagani, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, P. C. F. Di Stefano, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, S. A. Hertel, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, A. Kennedy, M. Kiveni, K. Koch, B. Loer, E. Lopez Asamar, R. Mahapatra, V. Mandic, C. Martinez, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, D. C. Moore, P. Nadeau, R. H. Nelson, K. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, Y. Ricci, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, S. Scorza, B. Serfass, B. Shank, D. Speller, A. N. Villano, B. Welliver, D. H. Wright, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0. Read More

**Authors:**R. Agnese, A. J. Anderson, D. Balakishiyeva, R. Basu Thakur, D. A. Bauer, A. Borgland, D. Brandt, P. L. Brink, R. Bunker, B. Cabrera, D. O. Caldwell, D. G. Cerdeno, H. Chagani, M. Cherry, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, P. C. F. Di Stefano, E. Do Couto E Silva, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, J. Fox, M. Fritts, G. L. Godfrey, S. R. Golwala, J. Hall, H. R. Harris, J. Hasi, S. A. Hertel, B. A. Hines, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, S. A. Kenany, A. Kennedy, C. J. Kenney, M. Kiveni, K. Koch, B. Loer, E. Lopez Asamar, R. Mahapatra, V. Mandic, C. Martinez, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, D. C. Moore, P. Nadeau, R. H. Nelson, L. Novak, K. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, R. Radpour, W. Rau, P. Redl, A. Reisetter, R. W. Resch, Y. Ricci, T. Saab, B. Sadoulet, J. Sander, R. Schmitt, K. Schneck, R. W. Schnee, S. Scorza, D. Seitz, B. Serfass, B. Shank, D. Speller, A. Tomada, A. N. Villano, B. Welliver, D. H. Wright, S. Yellin, J. J. Yen, B. A. Young, J. Zhang

The SuperCDMS experiment in the Soudan Underground Laboratory searches for dark matter with a 9-kg array of cryogenic germanium detectors. Symmetric sensors on opposite sides measure both charge and phonons from each particle interaction, providing excellent discrimination between electron and nuclear recoils, and between surface and interior events. Surface event rejection capabilities were tested with two $^{210}$Pb sources producing $\sim$130 beta decays/hr. Read More

**Authors:**CDMS Collaboration, R. Agnese, Z. Ahmed, A. J. Anderson, S. Arrenberg, D. Balakishiyeva, R. Basu Thakur, D. A. Bauer, J. Billard, A. Borgland, D. Brandt, P. L. Brink, T. Bruch, R. Bunker, B. Cabrera, D. O. Caldwell, D. G. Cerdeno, H. Chagani, J. Cooley, B. Cornell, C. H. Crewdson, P. Cushman, M. Daal, F. Dejongh, E. Do Couto E Silva, T. Doughty, L. Esteban, S. Fallows, E. Figueroa-Feliciano, J. Filippini, J. Fox, M. Fritts, G. L. Godfrey, S. R. Golwala, J. Hall, R. H. Harris, S. A. Hertel, T. Hofer, D. Holmgren, L. Hsu, M. E. Huber, A. Jastram, O. Kamaev, B. Kara, M. H. Kelsey, A. Kennedy, P. Kim, M. Kiveni, K. Koch, M. Kos, S. W. Leman, B. Loer, E. Lopez Asamar, R. Mahapatra, V. Mandic, C. Martinez, K. A. McCarthy, N. Mirabolfathi, R. A. Moffatt, D. C. Moore, P. Nadeau, R. H. Nelson, K. Page, R. Partridge, M. Pepin, A. Phipps, K. Prasad, M. Pyle, H. Qiu, W. Rau, P. Redl, A. Reisetter, Y. Ricci, T. Saab, B. Sadoulet, J. Sander, K. Schneck, R. W. Schnee, S. Scorza, B. Serfass, B. Shank, D. Speller, K. M. Sundqvist, A. N. Villano, B. Welliver, D. H. Wright, S. Yellin, J. J. Yen, J. Yoo, B. A. Young, J. Zhang

We report results of a search for Weakly Interacting Massive Particles (WIMPS) with the silicon detectors of the CDMS II experiment. This blind analysis of 140.2 kg-days of data taken between July 2007 and September 2008 revealed three WIMP-candidate events with a surface-event background estimate of 0. Read More

**Authors:**CDMS Collaboration, R. Agnese

^{1}, Z. Ahmed

^{2}, A. J. Anderson

^{3}, S. Arrenberg

^{4}, D. Balakishiyeva

^{5}, R. Basu Thakur

^{6}, D. A. Bauer

^{7}, A. Borgland

^{8}, D. Brandt

^{9}, P. L. Brink

^{10}, T. Bruch

^{11}, R. Bunker

^{12}, B. Cabrera

^{13}, D. O. Caldwell

^{14}, D. G. Cerdeno

^{15}, H. Chagani

^{16}, J. Cooley

^{17}, B. Cornell

^{18}, C. H. Crewdson

^{19}, P. Cushman

^{20}, M. Daal

^{21}, F. Dejongh

^{22}, P. C. F. Di Stefano

^{23}, E. do Couto e Silva

^{24}, T. Doughty

^{25}, L. Esteban

^{26}, S. Fallows

^{27}, E. Figueroa-Feliciano

^{28}, J. Filippini

^{29}, J. Fox

^{30}, M. Fritts

^{31}, G. L. Godfrey

^{32}, S. R. Golwala

^{33}, J. Hall

^{34}, R. H. Harris

^{35}, S. A. Hertel

^{36}, T. Hofer

^{37}, D. Holmgren

^{38}, L. Hsu

^{39}, M. E. Huber

^{40}, A. Jastram

^{41}, O. Kamaev

^{42}, B. Kara

^{43}, M. H. Kelsey

^{44}, A. Kennedy

^{45}, P. Kim

^{46}, M. Kiveni

^{47}, K. Koch

^{48}, M. Kos

^{49}, S. W. Leman

^{50}, E. Lopez-Asamar

^{51}, R. Mahapatra

^{52}, V. Mandic

^{53}, C. Martinez

^{54}, K. A. McCarthy

^{55}, N. Mirabolfathi

^{56}, R. A. Moffatt

^{57}, D. C. Moore

^{58}, P. Nadeau

^{59}, R. H. Nelson

^{60}, K. Page

^{61}, R. Partridge

^{62}, M. Pepin

^{63}, A. Phipps

^{64}, K. Prasad

^{65}, M. Pyle

^{66}, H. Qiu

^{67}, W. Rau

^{68}, P. Redl

^{69}, A. Reisetter

^{70}, Y. Ricci

^{71}, T. Saab

^{72}, B. Sadoulet

^{73}, J. Sander

^{74}, K. Schneck

^{75}, R. W. Schnee

^{76}, S. Scorza

^{77}, B. Serfass

^{78}, B. Shank

^{79}, D. Speller

^{80}, K. M. Sundqvist

^{81}, A. N. Villano

^{82}, B. Welliver

^{83}, D. H. Wright

^{84}, S. Yellin

^{85}, J. J. Yen

^{86}, J. Yoo

^{87}, B. A. Young

^{88}, J. Zhan

^{89}

**Affiliations:**

^{1}University of Florida, Gainesville,

^{2}California Institute of Technology,

^{3}Massachusetts Institute of Technology,

^{4}University of Zurich,

^{5}University of Florida, Gainesville,

^{6}Fermi National Accelerator Laboratory,

^{7}Fermi National Accelerator Laboratory,

^{8}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{9}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{10}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{11}University of Zurich,

^{12}Syracuse University,

^{13}Stanford University,

^{14}University of California, Santa Barbara,

^{15}Universidad Autonoma de Madrid,

^{16}University of Minnesota,

^{17}Southern Methodist University,

^{18}California Institute of Technology,

^{19}Queen's University,

^{20}University of Minnesota,

^{21}University of California, Berkeley,

^{22}Fermi National Accelerator Laboratory,

^{23}Queen's University,

^{24}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{25}University of California, Berkeley,

^{26}Universidad Autonoma de Madrid,

^{27}University of Minnesota,

^{28}Massachusetts Institute of Technology,

^{29}California Institute of Technology,

^{30}Queen's University,

^{31}University of Minnesota,

^{32}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{33}California Institute of Technology,

^{34}Pacific Northwest National Laboratory,

^{35}Texas A & M University,

^{36}Massachusetts Institute of Technology,

^{37}University of Minnesota,

^{38}Fermi National Accelerator Laboratory,

^{39}Fermi National Accelerator Laboratory,

^{40}University of Colorado, Denver,

^{41}Texas A & M University,

^{42}Queen's University,

^{43}Southern Methodist University,

^{44}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{45}University of Minnesota,

^{46}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{47}Syracuse University,

^{48}University of Minnesota,

^{49}Syracuse University,

^{50}Massachusetts Institute of Technology,

^{51}Universidad Autonoma de Madrid,

^{52}Texas A & M University,

^{53}University of Minnesota,

^{54}Queen's University,

^{55}Massachusetts Institute of Technology,

^{56}University of California, Berkeley,

^{57}Stanford University,

^{58}California Institute of Technology,

^{59}Queen's University,

^{60}California Institute of Technology,

^{61}Queen's University,

^{62}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{63}University of Minnesota,

^{64}University of California, Berkeley,

^{65}Texas A & M University,

^{66}University of California, Berkeley,

^{67}Southern Methodist University,

^{68}Queen's University,

^{69}Stanford University,

^{70}University of Evansville,

^{71}Queen's University,

^{72}University of Florida, Gainesville,

^{73}University of California, Berkeley,

^{74}Texas A & M University,

^{75}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{76}Syracuse University,

^{77}Southern Methodist University,

^{78}University of California, Berkeley,

^{79}Stanford University,

^{80}University of California, Berkeley,

^{81}University of California, Berkeley,

^{82}University of Minnesota,

^{83}University of Florida, Gainesville,

^{84}SLAC National Accelerator Laboratory / Kavli Institute for Particle Astrophysics and Cosmology,

^{85}Stanford University,

^{86}Stanford University,

^{87}Fermi National Accelerator Laboratory,

^{88}Santa Clara University,

^{89}University of Minnesota

We report results of a search for Weakly Interacting Massive Particles (WIMPs) with the Si detectors of the CDMS II experiment. This report describes a blind analysis of the first data taken with CDMS II's full complement of detectors in 2006-2007; results from this exposure using the Ge detectors have already been presented. We observed no candidate WIMP-scattering events in an exposure of 55. Read More

Supernova (SN) neutrinos detected on the Earth are subject to the shock wave effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the neutrino collective effects and the Earth matter effects. Considering the recent experimental result about the large mixing angle $\theta_{13}$ ($\backsimeq8.8^{\circ}$) provided by the Daya Bay Collaboration and applying the available knowledge for the neutrino conversion probability in the high resonance of SN, $P_{H}$, which is in the form of hypergeometric function in the case of large $\theta_{13}$, we deduce the expression of $P_{H}$ taking into account the shock wave effects. Read More

The inverse Kasteleyn matrix of a bipartite graph holds much information about the perfect matchings of the system such as local statistics which can be used to compute local and global asymptotics. In this paper, we consider three different weightings of domino tilings of the Aztec diamond and show using recurrence relations, we can compute the inverse Kasteleyn matrix. These weights are the one-periodic weighting where the horizontal edges have one weight and the vertical edges have another weight, the q^{vol} weighting which corresponds to multiplying the product of tile weights by q if we add a `box' to the height function and the two-periodic weighting which exhibits a flat region with defects in the center. Read More

We study random domino tilings of the Aztec diamond with different weights for horizontal and vertical dominoes. A domino tiling of an Aztec diamond can also be described by a particle system which is a determinantal process. We give a relation between the correlation kernel for this process and the inverse Kasteleyn matrix of the Aztec diamond. Read More

The Little map and the Edelman-Greene insertion algorithm, a generalization of the Robinson-Schensted correspondence, are both used for enumerating the reduced decompositions of an element of the symmetric group. We show the Little map factors through Edelman-Greene insertion and establish new results about each map as a consequence. In particular, we resolve some conjectures of Lam and Little. Read More

**Authors:**Daya Bay Collaboration, F. P. An, Q. An, J. Z. Bai, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, R. L. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, H. F. Hao, M. He, Q. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, V. Issakov, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, K. Shih, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, Y. Williamson, T. Wise, H. L. H. Wong, E. T. Worcester, F. F. Wu, Q. Wu, J. B. Xi, D. M. Xia, Z. Z. Xing, J. Xu, J. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

We report an improved measurement of the neutrino mixing angle $\theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $\sin^22\theta_{13}$ with a significance of 7.7 standard deviations. Read More