B. Eberly - MicroBooNE Collaboration

B. Eberly
Are you B. Eberly?

Claim your profile, edit publications, add additional information:

Contact Details

Name
B. Eberly
Affiliation
MicroBooNE Collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (32)
 
Physics - Instrumentation and Detectors (15)
 
Nuclear Experiment (6)

Publications Authored By B. Eberly

2017May
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, B. Bullard, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, G. De Geronimo, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, A. Hourlier, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, S. Li, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, S. Rescia, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, C. Thorn, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Read More

2017Apr
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. A. Sutton, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). Read More

2017Mar
Authors: MicroBooNE collaboration, P. Abratenko, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Read More

We present measurements of the neutrino and antineutrino total charged-current cross sections on carbon and their ratio using the MINERvA scintillator-tracker. The measurements span the energy range 2-22 GeV and were performed using forward and reversed horn focusing modes of the Fermilab low-energy NuMI beam to obtain large neutrino and antineutrino samples. The flux is obtained using a sub-sample of charged-current events at low hadronic energy transfer along with precise higher energy external neutrino cross section data overlapping with our energy range between 12-22 GeV. Read More

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

2016Nov
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. P. Zeller, J. Zennamo, C. Zhang

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Read More

Neutral-current production of $K^{+}$ by atmospheric neutrinos is a background in searches for the proton decay $p \rightarrow K^{+} \bar{\nu}$. Reactions such as $\nu p \rightarrow \nu K^{+} \Lambda$ are indistinguishable from proton decays when the decay products of the $\Lambda$ are below detection threshold. MINERvA identifies $K^{+}$ events by reconstructing the timing signature of a $K^{+}$ decay at rest. Read More

The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an {\em in situ} prediction of the shape of the flux as a function of neutrino energy from 2--50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy ($\nu$) have a nearly constant cross section as a function of incident neutrino energy. Read More

Neutrino-induced charged-current coherent kaon production, $\nu_{\mu}A\rightarrow\mu^{-}K^{+}A$, is a rare, inelastic electroweak process that brings a $K^+$ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than neutrino-induced charged-current coherent pion production, because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state $K^+$, $\mu^-$ and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. Read More

Separate samples of charged-current pion production events representing two semi-inclusive channels $\nu_\mu$-CC($\pi^{+}$) and $\bar{\nu}_{\mu}$-CC($\pi^{0}$) have been obtained using neutrino and antineutrino exposures of the MINERvA detector. Distributions in kinematic variables based upon $\mu^{\pm}$-track reconstructions are analyzed and compared for the two samples. The differential cross sections for muon production angle, muon momentum, and four-momentum transfer $Q^2$, are reported, and cross sections versus neutrino energy are obtained. Read More

Production of K^{+} mesons in charged-current \nu_{\mu} interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events containing a stopping K^{+} which decays at rest. The differential cross section in K^{+} kinetic energy, d\sigma/dT_{K}, is observed to be relatively flat between 0 and 500 MeV. Read More

The MINERvA experiment observes an excess of events containing electromagnetic showers relative to the expectation from Monte Carlo simulations in neutral-current neutrino interactions with mean beam energy of 4.5 GeV on a hydrocarbon target. The excess is characterized and found to be consistent with neutral-current neutral pion production with a broad energy distribution peaking at 7 GeV and a total cross section of 0. Read More

The MINERvA collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5 - 50 GeV. Read More

2016Jan
Authors: R. Acciarri, M. A. Acero, M. Adamowski, C. Adams, P. Adamson, S. Adhikari, Z. Ahmad, C. H. Albright, T. Alion, E. Amador, J. Anderson, K. Anderson, C. Andreopoulos, M. Andrews, R. Andrews, I. Anghel, J. d. Anjos, A. Ankowski, M. Antonello, A. ArandaFernandez, A. Ariga, T. Ariga, D. Aristizabal, E. Arrieta-Diaz, K. Aryal, J. Asaadi, D. Asner, M. S. Athar, M. Auger, A. Aurisano, V. Aushev, D. Autiero, M. Avila, J. J. Back, X. Bai, B. Baibussinov, M. Baird, A. B. Balantekin, B. Baller, P. Ballett, B. Bambah, M. Bansal, S. Bansal, G. J. Barker, W. A. Barletta, G. Barr, N. Barros, L. Bartoszek, A. Bashyal, M. Bass, F. Bay, J. Beacom, B. R. Behera, G. Bellettini, V. Bellini, O. Beltramello, P. A. Benetti, A. Bercellie, M. Bergevin, E. Berman, H. Berns, R. Bernstein, S. Bertolucci, B. Bhandari, V. Bhatnagar, B. Bhuyan, J. Bian, K. Biery, M. Bishai, T. Blackburn, A. Blake, F. d. M. Blaszczyk, E. Blaufuss, B. Bleakley, E. Blucher, V. Bocean, F. Boffelli, J. Boissevain, S. Bolognesi, T. Bolton, M. Bonesini, T. Boone, C. Booth, S. Bordoni, M. Borysova, B. Bourguille, S. B. Boyd, D. Brailsford, A. Brandt, J. Bremer, S. Brice, C. Bromberg, G. Brooijmans, G. Brown, R. Brown, G. Brunetti, X. Bu, N. Buchanan, H. Budd, B. Bugg, P. Calafiura, E. Calligarich, E. Calvo, L. Camilleri, M. Campanelli, C. Cantini, B. Carls, R. Carr, M. Cascella, C. Castromonte, E. CatanoMur, F. Cavanna, S. Centro, A. CerveraVillanueva, V. B. Chandratre, A. Chatterjee, S. Chattopadhyay, S. Chattopadhyay, L. Chaussard, S. Chembra, H. Chen, K. Chen, M. Chen, D. Cherdack, C. Chi, S. Childress, S. Choubey, B. C. Choudhary, G. Christodoulou, C. Christofferson, E. Church, D. Cianci, D. Cline, T. Coan, A. Cocco, J. Coelho, P. Cole, G. Collin, J. M. Conrad, M. Convery, R. Corey, L. Corwin, J. Cranshaw, P. Crivelli, D. Cronin-Hennessy, A. Curioni, J. Cushing, D. L. Adams, D. Dale, S. R. Das, T. Davenne, G. S. Davies, J. Davies, J. Dawson, K. De, A. deGouvea, J. K. deJong, P. deJong, P. DeLurgio, M. Decowski, A. Delbart, C. Densham, R. Dharmapalan, N. Dhingra, S. DiLuise, M. Diamantopoulou, J. S. Diaz, G. DiazBautista, M. Diwan, Z. Djurcic, J. Dolph, G. Drake, D. Duchesneau, M. Duvernois, H. Duyang, D. A. Dwyer, S. Dye, S. Dytman, B. Eberly, R. Edgecock, D. Edmunds, S. Elliott, M. Elnimr, S. Emery, E. Endress, S. Eno, A. Ereditato, C. O. Escobar, J. Evans, A. Falcone, L. Falk, A. Farbin, C. Farnese, Y. Farzan, A. Fava, L. Favilli, J. Felde, J. Felix, S. Fernandes, L. Fields, A. Finch, M. Fitton, B. Fleming, T. Forest, J. Fowler, W. Fox, J. Fried, A. Friedland, S. Fuess, B. Fujikawa, A. Gago, H. Gallagher, S. Galymov, T. Gamble, R. Gandhi, D. Garcia-Gamez, S. Gardiner, G. Garvey, V. M. Gehman, A. Gendotti, G. d. Geronimo, C. Ghag, P. Ghoshal, D. Gibin, I. Gil-Botella, R. Gill, D. Girardelli, A. Giri, S. Glavin, D. Goeldi, S. Golapinni, M. Gold, R. A. Gomes, J. J. GomezCadenas, M. C. Goodman, D. Gorbunov, S. Goswami, N. Graf, N. Graf, M. Graham, E. Gramelini, R. Gran, C. Grant, N. Grant, V. Greco, H. Greenlee, L. Greenler, C. Greenley, M. Groh, S. Grullon, T. Grundy, K. Grzelak, E. Guardincerri, V. Guarino, E. Guarnaccia, G. P. Guedes, R. Guenette, A. Guglielmi, A. T. Habig, R. W. Hackenburg, A. Hackenburg, H. Hadavand, R. Haenni, A. Hahn, M. D. Haigh, T. Haines, T. Hamernik, T. Handler, S. Hans, D. Harris, J. Hartnell, T. Hasegawa, R. Hatcher, A. Hatzikoutelis, S. Hays, E. Hazen, M. Headley, A. Heavey, K. Heeger, J. Heise, K. Hennessy, J. Hewes, A. Higuera, T. Hill, A. Himmel, M. Hogan, P. Holanda, A. Holin, W. Honey, S. Horikawa, G. Horton-Smith, B. Howard, J. Howell, P. Hurh, J. Huston, J. Hylen, R. Imlay, J. Insler, G. Introzzi, D. Ioanisyan, A. Ioannisian, K. Iwamoto, A. Izmaylov, C. Jackson, D. E. Jaffe, C. James, E. James, F. Jediny, C. Jen, A. Jhingan, S. Jiménez, J. H. Jo, M. Johnson, R. Johnson, J. Johnstone, B. J. Jones, J. Joshi, H. Jostlein, C. K. Jung, T. Junk, A. Kaboth, R. Kadel, T. Kafka, L. Kalousis, Y. Kamyshkov, G. Karagiorgi, D. Karasavvas, Y. Karyotakis, A. Kaur, P. Kaur, B. Kayser, N. Kazaryan, E. Kearns, P. Keener, S. Kemboi, E. Kemp, S. H. Kettell, M. Khabibullin, M. Khandaker, A. Khotjantsev, B. Kirby, M. Kirby, J. Klein, T. Kobilarcik, S. Kohn, G. Koizumi, A. Kopylov, M. Kordosky, L. Kormos, U. Kose, V. A. Kostelecky, M. Kramer, I. Kreslo, R. Kriske, W. Kropp, Y. Kudenko, V. A. Kudryavtsev, S. Kulagin, A. Kumar, G. K. Kumar, J. Kumar, L. Kumar, T. Kutter, A. Laminack, K. Lande, C. Lane, K. Lang, F. Lanni, J. Learned, P. Lebrun, D. Lee, H. Lee, K. Lee, W. M. Lee, M. A. LeiguideOliveira, Q. Li, S. Li, S. Li, X. Li, Y. Li, Z. Li, J. Libo, C. S. Lin, S. Lin, J. Ling, J. Link, Z. Liptak, D. Lissauer, L. Littenberg, B. Littlejohn, Q. Liu, T. Liu, S. Lockwitz, N. Lockyer, T. Loew, M. Lokajicek, K. Long, M. D. L. Lopes, J. P. Lopez, J. Losecco, W. Louis, J. Lowery, M. Luethi, K. B. Luk, B. Lundberg, T. Lundin, X. Luo, T. Lux, J. Lykken, A. A. Machado, J. R. Macier, S. Magill, G. Mahler, K. Mahn, M. Malek, S. Malhotra, D. Malon, F. Mammoliti, S. Mancina, S. K. Mandal, S. Mandodi, S. L. Manly, A. Mann, A. Marchionni, W. Marciano, C. Mariani, J. Maricic, A. Marino, M. Marshak, C. Marshall, J. Marshall, J. Marteau, J. Martin-Albo, D. Martinez, S. Matsuno, J. Matthews, C. Mauger, K. Mavrokoridis, D. Mayilyan, E. Mazzucato, N. McCauley, E. McCluskey, N. McConkey, K. McDonald, K. S. McFarland, A. M. McGowan, C. McGrew, R. McKeown, D. McNulty, R. McTaggart, A. Mefodiev, M. Mehrian, P. Mehta, D. Mei, O. Mena, S. Menary, H. Mendez, A. Menegolli, G. Meng, Y. Meng, H. Merritt, D. Mertins, M. Messier, W. Metcalf, M. Mewes, H. Meyer, T. Miao, R. Milincic, W. Miller, G. Mills, O. Mineev, O. Miranda, C. S. Mishra, S. R. Mishra, B. Mitrica, D. Mladenov, I. Mocioiu, R. Mohanta, N. Mokhov, C. Montanari, D. Montanari, J. Moon, M. Mooney, C. Moore, J. Morfin, B. Morgan, C. Morris, W. Morse, Z. Moss, C. Mossey, C. A. Moura, J. Mousseau, L. Mualem, M. Muether, S. Mufson, S. Murphy, J. Musser, R. Musser, Y. Nakajima, D. Naples, J. Navarro, D. Navas, J. Nelson, M. Nessi, M. Newcomer, Y. Ng, R. Nichol, T. C. Nicholls, K. Nikolics, E. Niner, B. Norris, F. Noto, P. Novakova, P. Novella, J. Nowak, M. S. Nunes, H. O'Keeffe, R. Oldeman, R. Oliveira, T. Olson, Y. Onishchuk, J. Osta, T. Ovsjannikova, B. Page, S. Pakvasa, S. Pal, O. Palamara, A. Palazzo, J. Paley, C. Palomares, E. Pantic, V. Paolone, V. Papadimitriou, J. Park, S. Parke, Z. Parsa, S. Pascoli, R. Patterson, S. Patton, T. Patzak, B. Paulos, L. Paulucci, Z. Pavlovic, G. Pawloski, S. Peeters, E. Pennacchio, A. Perch, G. N. Perdue, L. Periale, J. D. Perkin, H. Pessard, G. Petrillo, R. Petti, A. Petukhov, F. Pietropaolo, R. Plunkett, S. Pordes, M. Potekhin, R. Potenza, B. Potukuchi, N. Poudyal, O. Prokofiev, N. Pruthi, P. Przewlocki, D. Pushka, X. Qian, J. L. Raaf, R. Raboanary, V. Radeka, A. Radovic, G. Raffelt, I. Rakhno, H. T. Rakotondramanana, L. Rakotondravohitra, Y. A. Ramachers, R. Rameika, J. Ramsey, A. Rappoldi, G. Raselli, P. Ratoff, B. Rebel, C. Regenfus, J. Reichenbacher, D. Reitzner, A. Remoto, A. Renshaw, S. Rescia, M. Richardson, K. Rielage, K. Riesselmann, M. Robinson, L. Rochester, O. B. Rodrigues, P. Rodrigues, B. Roe, M. Rosen, R. M. Roser, M. Ross-Lonergan, M. Rossella, A. Rubbia, C. Rubbia, R. Rucinski, C. RudolphvonRohr, B. Russell, D. Ruterbories, R. Saakyan, N. Sahu, P. Sala, N. Samios, F. Sanchez, M. Sanchez, B. Sands, S. Santana, R. Santorelli, G. Santucci, N. Saoulidou, A. Scaramelli, H. Schellman, P. Schlabach, R. Schmitt, D. Schmitz, J. Schneps, K. Scholberg, A. Schukraft, J. Schwehr, E. Segreto, S. Seibert, J. A. Sepulveda-Quiroz, F. Sergiampietri, L. Sexton-Kennedy, D. Sgalaberna, M. Shaevitz, J. Shahi, S. Shahsavarani, P. Shanahan, S. U. Shankar, R. Sharma, R. K. Sharma, T. Shaw, R. Shrock, I. Shyrma, N. Simos, G. Sinev, I. Singh, J. Singh, J. Singh, V. Singh, G. Sinnis, W. Sippach, D. Smargianaki, M. Smy, E. Snider, P. Snopok, J. Sobczyk, H. Sobel, M. Soderberg, N. Solomey, W. Sondheim, M. Sorel, A. Sousa, K. Soustruznik, J. Spitz, J. Spitz, N. J. Spooner, M. Stancari, I. Stancu, D. Stefan, H. M. Steiner, J. Stewart, J. Stock, S. Stoica, J. Stone, J. Strait, M. Strait, T. Strauss, S. Striganov, R. Sulej, G. Sullivan, Y. Sun, L. Suter, C. M. Sutera, R. Svoboda, B. Szczerbinska, A. Szelc, S. Söldner-Rembold, R. Talaga, M. Tamsett, S. Tariq, E. Tatar, R. Tayloe, C. Taylor, D. Taylor, K. Terao, M. Thiesse, J. Thomas, L. F. Thompson, M. Thomson, C. Thorn, M. Thorpe, X. Tian, D. Tiedt, S. C. Timm, A. Tonazzo, T. Tope, A. Topkar, F. R. Torres, M. Torti, M. Tortola, F. Tortorici, M. Toups, C. Touramanis, M. Tripathi, I. Tropin, Y. Tsai, K. V. Tsang, R. Tsenov, S. Tufanli, C. Tull, J. Turner, M. Tzanov, E. Tziaferi, Y. Uchida, J. Urheim, T. Usher, M. Vagins, P. Vahle, G. A. Valdiviesso, L. Valerio, Z. Vallari, J. Valle, R. VanBerg, R. VandeWater, P. VanGemmeren, F. Varanini, G. Varner, G. Vasseur, K. Vaziri, G. Velev, S. Ventura, A. Verdugo, T. Viant, T. V. Vieira, C. Vignoli, C. Vilela, B. Viren, T. Vrba, T. Wachala, D. Wahl, M. Wallbank, N. Walsh, B. Wang, H. Wang, L. Wang, T. Wang, T. K. Warburton, D. Warner, M. Wascko, D. Waters, T. B. Watson, A. Weber, M. Weber, W. Wei, A. Weinstein, D. Wells, D. Wenman, M. Wetstein, A. White, L. Whitehead, D. Whittington, M. Wilking, J. Willhite, P. Wilson, R. J. Wilson, L. Winslow, P. Wittich, S. Wojcicki, H. H. Wong, K. Wood, E. Worcester, M. Worcester, S. Wu, T. Xin, C. Yanagisawa, S. Yang, T. Yang, K. Yarritu, J. Ye, M. Yeh, N. Yershov, K. Yonehara, B. Yu, J. Yu, J. Zalesak, A. Zalewska, B. Zamorano, L. Zang, A. Zani, A. Zani, G. Zavala, G. Zeller, C. Zhang, C. Zhang, E. D. Zimmerman, M. Zito, R. Zwaska

This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector. Read More

2016Jan
Authors: R. Acciarri, M. A. Acero, M. Adamowski, C. Adams, P. Adamson, S. Adhikari, Z. Ahmad, C. H. Albright, T. Alion, E. Amador, J. Anderson, K. Anderson, C. Andreopoulos, M. Andrews, R. Andrews, I. Anghel, J. d. Anjos, A. Ankowski, M. Antonello, A. ArandaFernandez, A. Ariga, T. Ariga, D. Aristizabal, E. Arrieta-Diaz, K. Aryal, J. Asaadi, D. Asner, M. S. Athar, M. Auger, A. Aurisano, V. Aushev, D. Autiero, M. Avila, J. J. Back, X. Bai, B. Baibussinov, M. Baird, A. B. Balantekin, B. Baller, P. Ballett, B. Bambah, M. Bansal, S. Bansal, G. J. Barker, W. A. Barletta, G. Barr, N. Barros, L. Bartoszek, A. Bashyal, M. Bass, F. Bay, J. Beacom, B. R. Behera, G. Bellettini, V. Bellini, O. Beltramello, P. A. Benetti, A. Bercellie, M. Bergevin, E. Berman, H. Berns, R. Bernstein, S. Bertolucci, B. Bhandari, V. Bhatnagar, B. Bhuyan, J. Bian, K. Biery, M. Bishai, T. Blackburn, A. Blake, F. d. M. Blaszczyk, E. Blaufuss, B. Bleakley, E. Blucher, V. Bocean, F. Boffelli, J. Boissevain, S. Bolognesi, T. Bolton, M. Bonesini, T. Boone, C. Booth, S. Bordoni, M. Borysova, B. Bourguille, S. B. Boyd, D. Brailsford, A. Brandt, J. Bremer, S. Brice, C. Bromberg, G. Brooijmans, G. Brown, R. Brown, G. Brunetti, X. Bu, N. Buchanan, H. Budd, B. Bugg, P. Calafiura, E. Calligarich, E. Calvo, L. Camilleri, M. Campanelli, C. Cantini, B. Carls, R. Carr, M. Cascella, C. Castromonte, E. CatanoMur, F. Cavanna, S. Centro, A. CerveraVillanueva, V. B. Chandratre, A. Chatterjee, S. Chattopadhyay, S. Chattopadhyay, L. Chaussard, S. Chembra, H. Chen, K. Chen, M. Chen, D. Cherdack, C. Chi, S. Childress, S. Choubey, B. C. Choudhary, G. Christodoulou, C. Christofferson, E. Church, D. Cianci, D. Cline, T. Coan, A. Cocco, J. Coelho, P. Cole, G. Collin, J. M. Conrad, M. Convery, R. Corey, L. Corwin, J. Cranshaw, P. Crivelli, D. Cronin-Hennessy, A. Curioni, J. Cushing, D. L. Adams, D. Dale, S. R. Das, T. Davenne, G. S. Davies, J. Davies, J. Dawson, K. De, A. deGouvea, J. K. deJong, P. deJong, P. DeLurgio, M. Decowski, A. Delbart, C. Densham, R. Dharmapalan, N. Dhingra, S. DiLuise, M. Diamantopoulou, J. S. Diaz, G. DiazBautista, M. Diwan, Z. Djurcic, J. Dolph, G. Drake, D. Duchesneau, M. Duvernois, H. Duyang, D. A. Dwyer, S. Dye, S. Dytman, B. Eberly, R. Edgecock, D. Edmunds, S. Elliott, M. Elnimr, S. Emery, E. Endress, S. Eno, A. Ereditato, C. O. Escobar, J. Evans, A. Falcone, L. Falk, A. Farbin, C. Farnese, Y. Farzan, A. Fava, L. Favilli, J. Felde, J. Felix, S. Fernandes, L. Fields, A. Finch, M. Fitton, B. Fleming, T. Forest, J. Fowler, W. Fox, J. Fried, A. Friedland, S. Fuess, B. Fujikawa, A. Gago, H. Gallagher, S. Galymov, T. Gamble, R. Gandhi, D. Garcia-Gamez, S. Gardiner, G. Garvey, V. M. Gehman, A. Gendotti, G. d. Geronimo, C. Ghag, P. Ghoshal, D. Gibin, I. Gil-Botella, R. Gill, D. Girardelli, A. Giri, S. Glavin, D. Goeldi, S. Golapinni, M. Gold, R. A. Gomes, J. J. GomezCadenas, M. C. Goodman, D. Gorbunov, S. Goswami, N. Graf, N. Graf, M. Graham, E. Gramelini, R. Gran, C. Grant, N. Grant, V. Greco, H. Greenlee, L. Greenler, C. Greenley, M. Groh, S. Grullon, T. Grundy, K. Grzelak, E. Guardincerri, V. Guarino, E. Guarnaccia, G. P. Guedes, R. Guenette, A. Guglielmi, A. T. Habig, R. W. Hackenburg, A. Hackenburg, H. Hadavand, R. Haenni, A. Hahn, M. D. Haigh, T. Haines, T. Hamernik, T. Handler, S. Hans, D. Harris, J. Hartnell, T. Hasegawa, R. Hatcher, A. Hatzikoutelis, S. Hays, E. Hazen, M. Headley, A. Heavey, K. Heeger, J. Heise, K. Hennessy, J. Hewes, A. Higuera, T. Hill, A. Himmel, M. Hogan, P. Holanda, A. Holin, W. Honey, S. Horikawa, G. Horton-Smith, B. Howard, J. Howell, P. Hurh, J. Huston, J. Hylen, R. Imlay, J. Insler, G. Introzzi, D. Ioanisyan, A. Ioannisian, K. Iwamoto, A. Izmaylov, C. Jackson, D. E. Jaffe, C. James, E. James, F. Jediny, C. Jen, A. Jhingan, S. Jiménez, J. H. Jo, M. Johnson, R. Johnson, J. Johnstone, B. J. Jones, J. Joshi, H. Jostlein, C. K. Jung, T. Junk, A. Kaboth, R. Kadel, T. Kafka, L. Kalousis, Y. Kamyshkov, G. Karagiorgi, D. Karasavvas, Y. Karyotakis, A. Kaur, P. Kaur, B. Kayser, N. Kazaryan, E. Kearns, P. Keener, S. Kemboi, E. Kemp, S. H. Kettell, M. Khabibullin, M. Khandaker, A. Khotjantsev, B. Kirby, M. Kirby, J. Klein, T. Kobilarcik, S. Kohn, G. Koizumi, A. Kopylov, M. Kordosky, L. Kormos, U. Kose, A. Kostelecky, M. Kramer, I. Kreslo, R. Kriske, W. Kropp, Y. Kudenko, V. A. Kudryavtsev, S. Kulagin, A. Kumar, G. Kumar, J. Kumar, L. Kumar, T. Kutter, A. Laminack, K. Lande, C. Lane, K. Lang, F. Lanni, J. Learned, P. Lebrun, D. Lee, H. Lee, K. Lee, W. M. Lee, M. A. LeiguideOliveira, Q. Li, S. Li, S. Li, X. Li, Y. Li, Z. Li, J. Libo, C. S. Lin, S. Lin, J. Ling, J. Link, Z. Liptak, D. Lissauer, L. Littenberg, B. Littlejohn, Q. Liu, T. Liu, S. Lockwitz, N. Lockyer, T. Loew, M. Lokajicek, K. Long, M. D. L. Lopes, J. P. Lopez, J. Losecco, W. Louis, J. Lowery, M. Luethi, K. Luk, B. Lundberg, T. Lundin, X. Luo, T. Lux, J. Lykken, A. A. Machado, J. R. Macier, S. Magill, G. Mahler, K. Mahn, M. Malek, S. Malhotra, D. Malon, F. Mammoliti, S. Mancina, S. K. Mandal, S. Mandodi, S. L. Manly, A. Mann, A. Marchionni, W. Marciano, C. Mariani, J. Maricic, A. Marino, M. Marshak, C. Marshall, J. Marshall, J. Marteau, J. Martin-Albo, D. Martinez, S. Matsuno, J. Matthews, C. Mauger, K. Mavrokoridis, D. Mayilyan, E. Mazzucato, N. McCauley, E. McCluskey, N. McConkey, K. McDonald, K. S. McFarland, A. M. McGowan, C. McGrew, R. McKeown, D. McNulty, R. McTaggart, A. Mefodiev, M. Mehrian, P. Mehta, D. Mei, O. Mena, S. Menary, H. Mendez, A. Menegolli, G. Meng, Y. Meng, H. Merritt, D. Mertins, M. Messier, W. Metcalf, M. Mewes, H. Meyer, T. Miao, R. Milincic, W. Miller, G. Mills, O. Mineev, O. Miranda, C. S. Mishra, S. R. Mishra, B. Mitrica, D. Mladenov, I. Mocioiu, R. Mohanta, N. Mokhov, C. Montanari, D. Montanari, J. Moon, M. Mooney, C. Moore, J. Morfin, B. Morgan, C. Morris, W. Morse, Z. Moss, C. Mossey, C. A. Moura, J. Mousseau, L. Mualem, M. Muether, S. Mufson, S. Murphy, J. Musser, R. Musser, Y. Nakajima, D. Naples, J. Navarro, D. Navas, J. Nelson, M. Nessi, M. Newcomer, Y. Ng, R. Nichol, T. C. Nicholls, K. Nikolics, E. Niner, B. Norris, F. Noto, P. Novakova, P. Novella, J. Nowak, M. S. Nunes, H. O'Keeffe, R. Oldeman, R. Oliveira, T. Olson, Y. Onishchuk, J. Osta, T. Ovsjannikova, B. Page, S. Pakvasa, S. Pal, O. Palamara, A. Palazzo, J. Paley, C. Palomares, E. Pantic, V. Paolone, V. Papadimitriou, J. Park, S. Parke, Z. Parsa, S. Pascoli, R. Patterson, S. Patton, T. Patzak, B. Paulos, L. Paulucci, Z. Pavlovic, G. Pawloski, S. Peeters, E. Pennacchio, A. Perch, G. N. Perdue, L. Periale, J. D. Perkin, H. Pessard, G. Petrillo, R. Petti, A. Petukhov, F. Pietropaolo, R. Plunkett, S. Pordes, M. Potekhin, R. Potenza, B. Potukuchi, N. Poudyal, O. Prokofiev, N. Pruthi, P. Przewlocki, D. Pushka, X. Qian, J. L. Raaf, R. Raboanary, V. Radeka, A. Radovic, G. Raffelt, I. Rakhno, H. T. Rakotondramanana, L. Rakotondravohitra, Y. A. Ramachers, R. Rameika, J. Ramsey, A. Rappoldi, G. Raselli, P. Ratoff, B. Rebel, C. Regenfus, J. Reichenbacher, D. Reitzner, A. Remoto, A. Renshaw, S. Rescia, M. Richardson, K. Rielage, K. Riesselmann, M. Robinson, L. Rochester, O. B. Rodrigues, P. Rodrigues, B. Roe, M. Rosen, R. M. Roser, M. Ross-Lonergan, M. Rossella, A. Rubbia, C. Rubbia, R. Rucinski, C. RudolphvonRohr, B. Russell, D. Ruterbories, R. Saakyan, N. Sahu, P. Sala, N. Samios, F. Sanchez, M. Sanchez, B. Sands, S. Santana, R. Santorelli, G. Santucci, N. Saoulidou, A. Scaramelli, H. Schellman, P. Schlabach, R. Schmitt, D. Schmitz, J. Schneps, K. Scholberg, A. Schukraft, J. Schwehr, E. Segreto, S. Seibert, J. A. Sepulveda-Quiroz, F. Sergiampietri, L. Sexton-Kennedy, D. Sgalaberna, M. Shaevitz, J. Shahi, S. Shahsavarani, P. Shanahan, S. U. Shankar, R. Sharma, R. K. Sharma, T. Shaw, R. Shrock, I. Shyrma, N. Simos, G. Sinev, I. Singh, J. Singh, J. Singh, V. Singh, G. Sinnis, W. Sippach, D. Smargianaki, M. Smy, E. Snider, P. Snopok, J. Sobczyk, H. Sobel, M. Soderberg, N. Solomey, W. Sondheim, M. Sorel, A. Sousa, K. Soustruznik, J. Spitz, N. J. Spooner, M. Stancari, I. Stancu, D. Stefan, H. M. Steiner, J. Stewart, J. Stock, S. Stoica, J. Stone, J. Strait, M. Strait, T. Strauss, S. Striganov, R. Sulej, G. Sullivan, Y. Sun, L. Suter, C. M. Sutera, R. Svoboda, B. Szczerbinska, A. Szelc, S. Söldner-Rembold, R. Talaga, M. Tamsett, S. Tariq, E. Tatar, R. Tayloe, C. Taylor, D. Taylor, K. Terao, M. Thiesse, J. Thomas, L. F. Thompson, M. Thomson, C. Thorn, M. Thorpe, X. Tian, D. Tiedt, S. C. Timm, A. Tonazzo, T. Tope, A. Topkar, F. R. Torres, M. Torti, M. Tortola, F. Tortorici, M. Toups, C. Touramanis, M. Tripathi, I. Tropin, Y. Tsai, K. V. Tsang, R. Tsenov, S. Tufanli, C. Tull, J. Turner, M. Tzanov, E. Tziaferi, Y. Uchida, J. Urheim, T. Usher, M. Vagins, P. Vahle, G. A. Valdiviesso, L. Valerio, Z. Vallari, J. Valle, R. VanBerg, R. VandeWater, P. VanGemmeren, F. Varanini, G. Varner, G. Vasseur, K. Vaziri, G. Velev, S. Ventura, A. Verdugo, T. Viant, T. V. Vieira, C. Vignoli, C. Vilela, B. Viren, T. Vrba, T. Wachala, D. Wahl, M. Wallbank, N. Walsh, B. Wang, H. Wang, L. Wang, T. Wang, T. K. Warburton, D. Warner, M. Wascko, D. Waters, T. B. Watson, A. Weber, M. Weber, W. Wei, A. Weinstein, D. Wells, D. Wenman, M. Wetstein, A. White, L. Whitehead, D. Whittington, M. Wilking, J. Willhite, P. Wilson, R. J. Wilson, L. Winslow, P. Wittich, S. Wojcicki, H. H. Wong, K. Wood, E. Worcester, M. Worcester, S. Wu, T. Xin, C. Yanagisawa, S. Yang, T. Yang, K. Yarritu, J. Ye, M. Yeh, N. Yershov, K. Yonehara, B. Yu, J. Yu, J. Zalesak, A. Zalewska, B. Zamorano, L. Zang, A. Zani, A. Zani, G. Zavala, G. Zeller, C. Zhang, C. Zhang, E. D. Zimmerman, M. Zito, R. Zwaska

A description of the proposed detector(s) for DUNE at LBNF Read More

Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based $\nu_\mu$ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to $\sim$ 10% due to uncertainties in hadron production and focusing. We have isolated a sample of 135 $\pm$ 17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. Read More

2015Dec
Authors: DUNE Collaboration, R. Acciarri, M. A. Acero, M. Adamowski, C. Adams, P. Adamson, S. Adhikari, Z. Ahmad, C. H. Albright, T. Alion, E. Amador, J. Anderson, K. Anderson, C. Andreopoulos, M. Andrews, R. Andrews, I. Anghel, J. d. Anjos, A. Ankowski, M. Antonello, A. ArandaFernandez, A. Ariga, T. Ariga, D. Aristizabal, E. Arrieta-Diaz, K. Aryal, J. Asaadi, D. Asner, M. S. Athar, M. Auger, A. Aurisano, V. Aushev, D. Autiero, M. Avila, J. J. Back, X. Bai, B. Baibussinov, M. Baird, A. B. Balantekin, B. Baller, P. Ballett, B. Bambah, M. Bansal, S. Bansal, G. J. Barker, W. A. Barletta, G. Barr, N. Barros, L. Bartoszek, A. Bashyal, M. Bass, F. Bay, J. Beacom, B. R. Behera, G. Bellettini, V. Bellini, O. Beltramello, P. A. Benetti, A. Bercellie, M. Bergevin, E. Berman, H. Berns, R. Bernstein, S. Bertolucci, B. Bhandari, V. Bhatnagar, B. Bhuyan, J. Bian, K. Biery, M. Bishai, T. Blackburn, A. Blake, F. d. M. Blaszczyk, E. Blaufuss, B. Bleakley, E. Blucher, V. Bocean, F. Boffelli, J. Boissevain, S. Bolognesi, T. Bolton, M. Bonesini, T. Boone, C. Booth, S. Bordoni, M. Borysova, B. Bourguille, S. B. Boyd, D. Brailsford, A. Brandt, J. Bremer, S. Brice, C. Bromberg, G. Brooijmans, G. Brown, R. Brown, G. Brunetti, X. Bu, N. Buchanan, H. Budd, B. Bugg, P. Calafiura, E. Calligarich, E. Calvo, L. Camilleri, M. Campanelli, C. Cantini, B. Carls, R. Carr, M. Cascella, C. Castromonte, E. CatanoMur, F. Cavanna, S. Centro, A. CerveraVillanueva, V. B. Chandratre, A. Chatterjee, S. Chattopadhyay, S. Chattopadhyay, L. Chaussard, S. Chembra, H. Chen, K. Chen, M. Chen, D. Cherdack, C. Chi, S. Childress, S. Choubey, B. C. Choudhary, G. Christodoulou, C. Christofferson, E. Church, D. Cianci, D. Cline, T. Coan, A. Cocco, J. Coelho, P. Cole, G. Collin, J. M. Conrad, M. Convery, R. Corey, L. Corwin, J. Cranshaw, P. Crivelli, D. Cronin-Hennessy, A. Curioni, J. Cushing, D. L. Adams, D. Dale, S. R. Das, T. Davenne, G. S. Davies, J. Davies, J. Dawson, K. De, A. deGouvea, J. K. deJong, P. deJong, P. DeLurgio, M. Decowski, A. Delbart, C. Densham, R. Dharmapalan, N. Dhingra, S. DiLuise, M. Diamantopoulou, J. S. Diaz, G. DiazBautista, M. Diwan, Z. Djurcic, J. Dolph, G. Drake, D. Duchesneau, M. Duvernois, H. Duyang, D. A. Dwyer, S. Dye, S. Dytman, B. Eberly, R. Edgecock, D. Edmunds, S. Elliott, M. Elnimr, S. Emery, E. Endress, S. Eno, A. Ereditato, C. O. Escobar, J. Evans, A. Falcone, L. Falk, A. Farbin, C. Farnese, Y. Farzan, A. Fava, L. Favilli, J. Felde, J. Felix, S. Fernandes, L. Fields, A. Finch, M. Fitton, B. Fleming, T. Forest, J. Fowler, W. Fox, J. Fried, A. Friedland, S. Fuess, B. Fujikawa, A. Gago, H. Gallagher, S. Galymov, T. Gamble, R. Gandhi, D. Garcia-Gamez, S. Gardiner, G. Garvey, V. M. Gehman, A. Gendotti, G. d. Geronimo, C. Ghag, P. Ghoshal, D. Gibin, I. Gil-Botella, R. Gill, D. Girardelli, A. Giri, S. Glavin, D. Goeldi, S. Golapinni, M. Gold, R. A. Gomes, J. J. GomezCadenas, M. C. Goodman, D. Gorbunov, S. Goswami, N. Graf, N. Graf, M. Graham, E. Gramelini, R. Gran, C. Grant, N. Grant, V. Greco, H. Greenlee, L. Greenler, C. Greenley, M. Groh, S. Grullon, T. Grundy, K. Grzelak, E. Guardincerri, V. Guarino, E. Guarnaccia, G. P. Guedes, R. Guenette, A. Guglielmi, A. T. Habig, R. W. Hackenburg, A. Hackenburg, H. Hadavand, R. Haenni, A. Hahn, M. D. Haigh, T. Haines, T. Hamernik, T. Handler, S. Hans, D. Harris, J. Hartnell, T. Hasegawa, R. Hatcher, A. Hatzikoutelis, S. Hays, E. Hazen, M. Headley, A. Heavey, K. Heeger, J. Heise, K. Hennessy, J. Hewes, A. Higuera, T. Hill, A. Himmel, M. Hogan, P. Holanda, A. Holin, W. Honey, S. Horikawa, G. Horton-Smith, B. Howard, J. Howell, P. Hurh, J. Huston, J. Hylen, R. Imlay, J. Insler, G. Introzzi, D. Ioanisyan, A. Ioannisian, K. Iwamoto, A. Izmaylov, C. Jackson, D. E. Jaffe, C. James, E. James, F. Jediny, C. Jen, A. Jhingan, S. Jiménez, J. H. Jo, M. Johnson, R. Johnson, J. Johnstone, B. J. Jones, J. Joshi, H. Jostlein, C. K. Jung, T. Junk, A. Kaboth, R. Kadel, T. Kafka, L. Kalousis, Y. Kamyshkov, G. Karagiorgi, D. Karasavvas, Y. Karyotakis, A. Kaur, P. Kaur, B. Kayser, N. Kazaryan, E. Kearns, P. Keener, S. Kemboi, E. Kemp, S. H. Kettell, M. Khabibullin, M. Khandaker, A. Khotjantsev, B. Kirby, M. Kirby, J. Klein, T. Kobilarcik, S. Kohn, G. Koizumi, A. Kopylov, M. Kordosky, L. Kormos, U. Kose, V. A. Kostelecky, M. Kramer, I. Kreslo, R. Kriske, W. Kropp, Y. Kudenko, V. A. Kudryavtsev, S. Kulagin, A. Kumar, G. Kumar, J. Kumar, L. Kumar, T. Kutter, A. Laminack, K. Lande, C. Lane, K. Lang, F. Lanni, J. Learned, P. Lebrun, D. Lee, H. Lee, K. Lee, W. M. Lee, M. A. LeiguideOliveira, Q. Li, S. Li, S. Li, X. Li, Y. Li, Z. Li, J. Libo, C. S. Lin, S. Lin, J. Ling, J. Link, Z. Liptak, D. Lissauer, L. Littenberg, B. Littlejohn, Q. Liu, T. Liu, S. Lockwitz, N. Lockyer, T. Loew, M. Lokajicek, K. Long, M. D. L. Lopes, J. P. Lopez, J. Losecco, W. Louis, J. Lowery, M. Luethi, K. Luk, B. Lundberg, T. Lundin, X. Luo, T. Lux, J. Lykken, A. A. Machado, J. R. Macier, S. Magill, G. Mahler, K. Mahn, M. Malek, S. Malhotra, D. Malon, F. Mammoliti, S. Mancina, S. K. Mandal, S. Mandodi, S. L. Manly, A. Mann, A. Marchionni, W. Marciano, C. Mariani, J. Maricic, A. Marino, M. Marshak, C. Marshall, J. Marshall, J. Marteau, J. Martin-Albo, D. Martinez, S. Matsuno, J. Matthews, C. Mauger, K. Mavrokoridis, D. Mayilyan, E. Mazzucato, N. McCauley, E. McCluskey, N. McConkey, K. McDonald, K. S. McFarland, A. M. McGowan, C. McGrew, R. McKeown, D. McNulty, R. McTaggart, A. Mefodiev, M. Mehrian, P. Mehta, D. Mei, O. Mena, S. Menary, H. Mendez, A. Menegolli, G. Meng, Y. Meng, H. Merritt, D. Mertins, M. Messier, W. Metcalf, M. Mewes, H. Meyer, T. Miao, R. Milincic, W. Miller, G. Mills, O. Mineev, O. Miranda, C. S. Mishra, S. R. Mishra, B. Mitrica, D. Mladenov, I. Mocioiu, R. Mohanta, N. Mokhov, C. Montanari, D. Montanari, J. Moon, M. Mooney, C. Moore, J. Morfin, B. Morgan, C. Morris, W. Morse, Z. Moss, C. Mossey, C. A. Moura, J. Mousseau, L. Mualem, M. Muether, S. Mufson, S. Murphy, J. Musser, R. Musser, Y. Nakajima, D. Naples, J. Navarro, D. Navas, J. Nelson, M. Nessi, M. Newcomer, Y. Ng, R. Nichol, T. C. Nicholls, K. Nikolics, E. Niner, B. Norris, F. Noto, P. Novakova, P. Novella, J. Nowak, M. S. Nunes, H. O'Keeffe, R. Oldeman, R. Oliveira, T. Olson, Y. Onishchuk, J. Osta, T. Ovsjannikova, B. Page, S. Pakvasa, S. Pal, O. Palamara, A. Palazzo, J. Paley, C. Palomares, E. Pantic, V. Paolone, V. Papadimitriou, J. Park, S. Parke, Z. Parsa, S. Pascoli, R. Patterson, S. Patton, T. Patzak, B. Paulos, L. Paulucci, Z. Pavlovic, G. Pawloski, S. Peeters, E. Pennacchio, A. Perch, G. N. Perdue, L. Periale, J. D. Perkin, H. Pessard, G. Petrillo, R. Petti, A. Petukhov, F. Pietropaolo, R. Plunkett, S. Pordes, M. Potekhin, R. Potenza, B. Potukuchi, N. Poudyal, O. Prokofiev, N. Pruthi, P. Przewlocki, D. Pushka, X. Qian, J. L. Raaf, R. Raboanary, V. Radeka, A. Radovic, G. Raffelt, I. Rakhno, H. T. Rakotondramanana, L. Rakotondravohitra, Y. A. Ramachers, R. Rameika, J. Ramsey, A. Rappoldi, G. Raselli, P. Ratoff, B. Rebel, C. Regenfus, J. Reichenbacher, D. Reitzner, A. Remoto, A. Renshaw, S. Rescia, M. Richardson, K. Rielage, K. Riesselmann, M. Robinson, L. Rochester, O. B. Rodrigues, P. Rodrigues, B. Roe, M. Rosen, R. M. Roser, M. Ross-Lonergan, M. Rossella, A. Rubbia, C. Rubbia, R. Rucinski, C. RudolphvonRohr, B. Russell, D. Ruterbories, R. Saakyan, N. Sahu, P. Sala, N. Samios, F. Sanchez, M. Sanchez, B. Sands, S. Santana, R. Santorelli, G. Santucci, N. Saoulidou, A. Scaramelli, H. Schellman, P. Schlabach, R. Schmitt, D. Schmitz, J. Schneps, K. Scholberg, A. Schukraft, J. Schwehr, E. Segreto, S. Seibert, J. A. Sepulveda-Quiroz, F. Sergiampietri, L. Sexton-Kennedy, D. Sgalaberna, M. Shaevitz, J. Shahi, S. Shahsavarani, P. Shanahan, S. U. Shankar, R. Sharma, R. K. Sharma, T. Shaw, R. Shrock, I. Shyrma, N. Simos, G. Sinev, I. Singh, J. Singh, J. Singh, V. Singh, G. Sinnis, W. Sippach, D. Smargianaki, M. Smy, E. Snider, P. Snopok, J. Sobczyk, H. Sobel, M. Soderberg, N. Solomey, W. Sondheim, M. Sorel, A. Sousa, K. Soustruznik, J. Spitz, J. Spitz, N. J. Spooner, M. Stancari, I. Stancu, D. Stefan, H. M. Steiner, J. Stewart, J. Stock, S. Stoica, J. Stone, J. Strait, M. Strait, T. Strauss, S. Striganov, R. Sulej, G. Sullivan, Y. Sun, L. Suter, C. M. Sutera, R. Svoboda, B. Szczerbinska, A. Szelc, S. Söldner-Rembold, R. Talaga, M. Tamsett, S. Tariq, E. Tatar, R. Tayloe, C. Taylor, D. Taylor, K. Terao, M. Thiesse, J. Thomas, L. F. Thompson, M. Thomson, C. Thorn, M. Thorpe, X. Tian, D. Tiedt, S. C. Timm, A. Tonazzo, T. Tope, A. Topkar, F. R. Torres, M. Torti, M. Tortola, F. Tortorici, M. Toups, C. Touramanis, M. Tripathi, I. Tropin, Y. Tsai, K. V. Tsang, R. Tsenov, S. Tufanli, C. Tull, J. Turner, M. Tzanov, E. Tziaferi, Y. Uchida, J. Urheim, T. Usher, M. Vagins, P. Vahle, G. A. Valdiviesso, L. Valerio, Z. Vallari, J. Valle, R. VanBerg, R. VandeWater, P. VanGemmeren, F. Varanini, G. Varner, G. Vasseur, K. Vaziri, G. Velev, S. Ventura, A. Verdugo, T. Viant, T. V. Vieira, C. Vignoli, C. Vilela, B. Viren, T. Vrba, T. Wachala, D. Wahl, M. Wallbank, N. Walsh, B. Wang, H. Wang, L. Wang, T. Wang, T. K. Warburton, D. Warner, M. Wascko, D. Waters, T. B. Watson, A. Weber, M. Weber, W. Wei, A. Weinstein, D. Wells, D. Wenman, M. Wetstein, A. White, L. Whitehead, D. Whittington, M. Wilking, J. Willhite, P. Wilson, R. J. Wilson, L. Winslow, P. Wittich, S. Wojcicki, H. H. Wong, K. Wood, E. Worcester, M. Worcester, S. Wu, T. Xin, C. Yanagisawa, S. Yang, T. Yang, K. Yarritu, J. Ye, M. Yeh, N. Yershov, K. Yonehara, B. Yu, J. Yu, J. Zalesak, A. Zalewska, B. Zamorano, L. Zang, A. Zani, G. Zavala, G. Zeller, C. Zhang, C. Zhang, E. D. Zimmerman, M. Zito, R. Zwaska

The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described. Read More

Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\nu_\mu$ interactions is combined with muon kinematics to permit separation of the quasielastic and $\Delta$(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Read More

The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\nu_{e}$ with that of similarly-selected $\nu_{\mu}$-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current $\nu_{e}$ interactions used by long-baseline neutrino oscillation experiments. Read More

Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $\bar{\nu}_e$ appearance oscillation experiments. The differential cross sections for $\pi^0$ momentum and production angle, for events with a single observed $\pi^0$ and no charged pions, are presented and compared to model predictions. Read More

2015Mar
Authors: R. Acciarri1, C. Adams2, R. An3, C. Andreopoulos4, A. M. Ankowski5, M. Antonello6, J. Asaadi7, W. Badgett8, L. Bagby9, B. Baibussinov10, B. Baller11, G. Barr12, N. Barros13, M. Bass14, V. Bellini15, P. Benetti16, S. Bertolucci17, K. Biery18, H. Bilokon19, M. Bishai20, A. Bitadze21, A. Blake22, F. Boffelli23, T. Bolton24, M. Bonesini25, J. Bremer26, S. J. Brice27, C. Bromberg28, L. Bugel29, E. Calligarich30, L. Camilleri31, D. Caratelli32, B. Carls33, F. Cavanna34, S. Centro35, H. Chen36, C. Chi37, E. Church38, D. Cianci39, A. G. Cocco40, G. H. Collin41, J. M. Conrad42, M. Convery43, G. De Geronimo44, A. Dermenev45, R. Dharmapalan46, S. Dixon47, Z. Djurcic48, S. Dytmam49, B. Eberly50, A. Ereditato51, J. Esquivel52, J. Evans53, A. Falcone54, C. Farnese55, A. Fava56, A. Ferrari57, B. T. Fleming58, W. M. Foreman59, J. Freestone60, T. Gamble61, G. Garvey62, V. Genty63, M. Geynisman64, D. Gibin65, S. Gninenko66, D. Göldi67, S. Gollapinni68, N. Golubev69, M. Graham70, E. Gramellini71, H. Greenlee72, R. Grosso73, R. Guenette74, A. Guglielmi75, A. Hackenburg76, R. Hänni77, O. Hen78, J. Hewes79, J. Ho80, G. Horton-Smith81, J. Howell82, A. Ivashkin83, C. James84, C. M. Jen85, R. A. Johnson86, B. J. P. Jones87, J. Joshi88, H. Jostlein89, D. Kaleko90, L. N. Kalousis91, G. Karagiorgi92, W. Ketchum93, B. Kirby94, M. Kirby95, M. Kirsanov96, J. Kisiel97, J. Klein98, J. Klinger99, T. Kobilarcik100, U. Kose101, I. Kreslo102, V. A. Kudryavtsev103, Y. Li104, B. Littlejohn105, D. Lissauer106, P. Livesly107, S. Lockwitz108, W. C. Louis109, M. Lüthi110, B. Lundberg111, F. Mammoliti112, G. Mannocchi113, A. Marchionni114, C. Mariani115, J. Marshall116, K. Mavrokoridis117, N. McCauley118, N. McConkey119, K. McDonald120, V. Meddage121, A. Menegolli122, G. Meng123, I. Mercer124, T. Miao125, T. Miceli126, G. B. Mills127, D. Mladenov128, C. Montanari129, D. Montanari130, J. Moon131, M. Mooney132, C. Moore133, Z. Moss134, M. H. Moulai135, S. Mufson136, R. Murrells137, D. Naples138, M. Nessi139, M. Nicoletto140, P. Nienaber141, B. Norris142, F. Noto143, J. Nowak144, S. Pal145, O. Palamara146, V. Paolone147, V. Papavassiliou148, S. Pate149, J. Pater150, Z. Pavlovic151, J. Perkin152, P. Picchi153, F. Pietropaolo154, P. Płoński155, S. Pordes156, R. Potenza157, G. Pulliam158, X. Qian159, L. Qiuguang160, J. L. Raaf161, V. Radeka162, R. Rameika163, A. Rappoldi164, G. L. Raselli165, P. N. Ratoff166, B. Rebel167, M. Richardson168, L. Rochester169, M. Rossella170, C. Rubbia171, C. Rudolf von Rohr172, B. Russell173, P. Sala174, A. Scaramelli175, D. W. Schmitz176, A. Schukraft177, W. Seligman178, M. H. Shaevitz179, B. Sippach180, E. Snider181, J. Sobczyk182, M. Soderberg183, S. Söldner-Rembold184, M. Spanu185, J. Spitz186, N. Spooner187, D. Stefan188, J. St. John189, T. Strauss190, R. Sulej191, C. M. Sutera192, A. M. Szelc193, N. Tagg194, C. E. Taylor195, K. Terao196, M. Thiesse197, L. Thompson198, M. Thomson199, C. Thorn200, M. Torti201, F. Tortorici202, M. Toups203, C. Touramanis204, Y. Tsai205, T. Usher206, R. Van de Water207, F. Varanini208, S. Ventura209, C. Vignoli210, T. Wachala211, M. Weber212, D. Whittington213, P. Wilson214, S. Wolbers215, T. Wongjirad216, K. Woodruff217, M. Xu218, T. Yang219, B. Yu220, A. Zani221, G. P. Zeller222, J. Zennamo223, C. Zhang224
Affiliations: 1MicroBooNE Collaboration, 2LAr1-ND Collaboration, 3MicroBooNE Collaboration, 4LAr1-ND Collaboration, 5LAr1-ND Collaboration, 6ICARUS-WA104 Collaboration, 7LAr1-ND Collaboration, 8LAr1-ND Collaboration, 9LAr1-ND Collaboration, 10ICARUS-WA104 Collaboration, 11LAr1-ND Collaboration, 12MicroBooNE Collaboration, 13LAr1-ND Collaboration, 14LAr1-ND Collaboration, 15ICARUS-WA104 Collaboration, 16ICARUS-WA104 Collaboration, 17ICARUS-WA104 Collaboration, 18ICARUS-WA104 Collaboration, 19ICARUS-WA104 Collaboration, 20LAr1-ND Collaboration, 21LAr1-ND Collaboration, 22MicroBooNE Collaboration, 23ICARUS-WA104 Collaboration, 24MicroBooNE Collaboration, 25ICARUS-WA104 Collaboration, 26ICARUS-WA104 Collaboration, 27MicroBooNE Collaboration, 28MicroBooNE Collaboration, 29LAr1-ND Collaboration, 30ICARUS-WA104 Collaboration, 31LAr1-ND Collaboration, 32MicroBooNE Collaboration, 33MicroBooNE Collaboration, 34LAr1-ND Collaboration, 35ICARUS-WA104 Collaboration, 36LAr1-ND Collaboration, 37LAr1-ND Collaboration, 38LAr1-ND Collaboration, 39LAr1-ND Collaboration, 40ICARUS-WA104 Collaboration, 41LAr1-ND Collaboration, 42LAr1-ND Collaboration, 43MicroBooNE Collaboration, 44LAr1-ND Collaboration, 45ICARUS-WA104 Collaboration, 46LAr1-ND Collaboration, 47LAr1-ND Collaboration, 48LAr1-ND Collaboration, 49MicroBooNE Collaboration, 50MicroBooNE Collaboration, 51LAr1-ND Collaboration, 52LAr1-ND Collaboration, 53LAr1-ND Collaboration, 54ICARUS-WA104 Collaboration, 55ICARUS-WA104 Collaboration, 56ICARUS-WA104 Collaboration, 57ICARUS-WA104 Collaboration, 58LAr1-ND Collaboration, 59LAr1-ND Collaboration, 60LAr1-ND Collaboration, 61LAr1-ND Collaboration, 62LAr1-ND Collaboration, 63LAr1-ND Collaboration, 64ICARUS-WA104 Collaboration, 65ICARUS-WA104 Collaboration, 66ICARUS-WA104 Collaboration, 67LAr1-ND Collaboration, 68MicroBooNE Collaboration, 69ICARUS-WA104 Collaboration, 70MicroBooNE Collaboration, 71LAr1-ND Collaboration, 72LAr1-ND Collaboration, 73MicroBooNE Collaboration, 74LAr1-ND Collaboration, 75ICARUS-WA104 Collaboration, 76LAr1-ND Collaboration, 77LAr1-ND Collaboration, 78MicroBooNE Collaboration, 79MicroBooNE Collaboration, 80LAr1-ND Collaboration, 81MicroBooNE Collaboration, 82LAr1-ND Collaboration, 83ICARUS-WA104 Collaboration, 84LAr1-ND Collaboration, 85LAr1-ND Collaboration, 86MicroBooNE Collaboration, 87LAr1-ND Collaboration, 88MicroBooNE Collaboration, 89MicroBooNE Collaboration, 90MicroBooNE Collaboration, 91LAr1-ND Collaboration, 92LAr1-ND Collaboration, 93LAr1-ND Collaboration, 94MicroBooNE Collaboration, 95MicroBooNE Collaboration, 96ICARUS-WA104 Collaboration, 97ICARUS-WA104 Collaboration, 98LAr1-ND Collaboration, 99LAr1-ND Collaboration, 100MicroBooNE Collaboration, 101ICARUS-WA104 Collaboration, 102LAr1-ND Collaboration, 103LAr1-ND Collaboration, 104MicroBooNE Collaboration, 105MicroBooNE Collaboration, 106LAr1-ND Collaboration, 107LAr1-ND Collaboration, 108MicroBooNE Collaboration, 109LAr1-ND Collaboration, 110LAr1-ND Collaboration, 111MicroBooNE Collaboration, 112ICARUS-WA104 Collaboration, 113ICARUS-WA104 Collaboration, 114MicroBooNE Collaboration, 115LAr1-ND Collaboration, 116MicroBooNE Collaboration, 117LAr1-ND Collaboration, 118LAr1-ND Collaboration, 119LAr1-ND Collaboration, 120MicroBooNE Collaboration, 121MicroBooNE Collaboration, 122ICARUS-WA104 Collaboration, 123ICARUS-WA104 Collaboration, 124LAr1-ND Collaboration, 125LAr1-ND Collaboration, 126MicroBooNE Collaboration, 127LAr1-ND Collaboration, 128ICARUS-WA104 Collaboration, 129ICARUS-WA104 Collaboration, 130LAr1-ND Collaboration, 131LAr1-ND Collaboration, 132MicroBooNE Collaboration, 133LAr1-ND Collaboration, 134LAr1-ND Collaboration, 135MicroBooNE Collaboration, 136LAr1-ND Collaboration, 137MicroBooNE Collaboration, 138MicroBooNE Collaboration, 139ICARUS-WA104 Collaboration, 140ICARUS-WA104 Collaboration, 141MicroBooNE Collaboration, 142LAr1-ND Collaboration, 143ICARUS-WA104 Collaboration, 144LAr1-ND Collaboration, 145LAr1-ND Collaboration, 146LAr1-ND Collaboration, 147MicroBooNE Collaboration, 148MicroBooNE Collaboration, 149MicroBooNE Collaboration, 150LAr1-ND Collaboration, 151LAr1-ND Collaboration, 152LAr1-ND Collaboration, 153ICARUS-WA104 Collaboration, 154ICARUS-WA104 Collaboration, 155ICARUS-WA104 Collaboration, 156MicroBooNE Collaboration, 157MicroBooNE Collaboration, 158LAr1-ND Collaboration, 159LAr1-ND Collaboration, 160LAr1-ND Collaboration, 161MicroBooNE Collaboration, 162LAr1-ND Collaboration, 163LAr1-ND Collaboration, 164ICARUS-WA104 Collaboration, 165ICARUS-WA104 Collaboration, 166LAr1-ND Collaboration, 167MicroBooNE Collaboration, 168LAr1-ND Collaboration, 169MicroBooNE Collaboration, 170ICARUS-WA104 Collaboration, 171ICARUS-WA104 Collaboration, 172LAr1-ND Collaboration, 173LAr1-ND Collaboration, 174ICARUS-WA104 Collaboration, 175ICARUS-WA104 Collaboration, 176LAr1-ND Collaboration, 177MicroBooNE Collaboration, 178MicroBooNE Collaboration, 179LAr1-ND Collaboration, 180LAr1-ND Collaboration, 181ICARUS-WA104 Collaboration, 182ICARUS-WA104 Collaboration, 183LAr1-ND Collaboration, 184LAr1-ND Collaboration, 185ICARUS-WA104 Collaboration, 186LAr1-ND Collaboration, 187LAr1-ND Collaboration, 188ICARUS-WA104 Collaboration, 189MicroBooNE Collaboration, 190LAr1-ND Collaboration, 191ICARUS-WA104 Collaboration, 192ICARUS-WA104 Collaboration, 193LAr1-ND Collaboration, 194MicroBooNE Collaboration, 195LAr1-ND Collaboration, 196LAr1-ND Collaboration, 197LAr1-ND Collaboration, 198LAr1-ND Collaboration, 199LAr1-ND Collaboration, 200LAr1-ND Collaboration, 201ICARUS-WA104 Collaboration, 202ICARUS-WA104 Collaboration, 203LAr1-ND Collaboration, 204LAr1-ND Collaboration, 205MicroBooNE Collaboration, 206MicroBooNE Collaboration, 207LAr1-ND Collaboration, 208ICARUS-WA104 Collaboration, 209ICARUS-WA104 Collaboration, 210ICARUS-WA104 Collaboration, 211ICARUS-WA104 Collaboration, 212LAr1-ND Collaboration, 213LAr1-ND Collaboration, 214MicroBooNE Collaboration, 215MicroBooNE Collaboration, 216LAr1-ND Collaboration, 217MicroBooNE Collaboration, 218MicroBooNE Collaboration, 219MicroBooNE Collaboration, 220LAr1-ND Collaboration, 221ICARUS-WA104 Collaboration, 222LAr1-ND Collaboration, 223LAr1-ND Collaboration, 224MicroBooNE Collaboration

A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6. Read More

The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2. Read More

A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon and a proton and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70$^{\circ}$ and proton kinetic energies greater than 110 MeV. Read More

Neutrino-induced coherent charged pion production on nuclei, $\stackrel{(-)}{\nu}_\mu A\to\mu^\pm\pi^\mp A$ is a rare, inelastic interaction in which a small squared four-momentum $| t|$ is transferred to the recoil nucleus leaving it intact in the reaction. In the scintillator tracker of MINERvA, we remove events with evidence of particles from nuclear breakup and reconstruct $| t|$ from the final state pion and muon. We select low $| t|$ events to isolate a sample rich in coherent candidates. Read More

2014Jun
Affiliations: 1The MINERvA Collaboration, 2The MINERvA Collaboration, 3The MINERvA Collaboration, 4The MINERvA Collaboration, 5The MINERvA Collaboration, 6The MINERvA Collaboration, 7The MINERvA Collaboration, 8The MINERvA Collaboration, 9The MINERvA Collaboration, 10The MINERvA Collaboration, 11The MINERvA Collaboration, 12The MINERvA Collaboration, 13The MINERvA Collaboration, 14The MINERvA Collaboration, 15The MINERvA Collaboration, 16The MINERvA Collaboration, 17The MINERvA Collaboration, 18The MINERvA Collaboration, 19The MINERvA Collaboration, 20The MINERvA Collaboration, 21The MINERvA Collaboration, 22The MINERvA Collaboration, 23The MINERvA Collaboration, 24The MINERvA Collaboration, 25The MINERvA Collaboration, 26The MINERvA Collaboration, 27The MINERvA Collaboration, 28The MINERvA Collaboration, 29The MINERvA Collaboration, 30The MINERvA Collaboration, 31The MINERvA Collaboration, 32The MINERvA Collaboration, 33The MINERvA Collaboration, 34The MINERvA Collaboration, 35The MINERvA Collaboration, 36The MINERvA Collaboration, 37The MINERvA Collaboration, 38The MINERvA Collaboration, 39The MINERvA Collaboration, 40The MINERvA Collaboration, 41The MINERvA Collaboration, 42The MINERvA Collaboration, 43The MINERvA Collaboration, 44The MINERvA Collaboration, 45The MINERvA Collaboration, 46The MINERvA Collaboration, 47The MINERvA Collaboration, 48The MINERvA Collaboration, 49The MINERvA Collaboration, 50The MINERvA Collaboration, 51The MINERvA Collaboration, 52The MINERvA Collaboration, 53The MINERvA Collaboration, 54The MINERvA Collaboration, 55The MINERvA Collaboration, 56The MINERvA Collaboration, 57The MINERvA Collaboration, 58The MINERvA Collaboration, 59The MINERvA Collaboration, 60The MINERvA Collaboration, 61The MINERvA Collaboration, 62The MINERvA Collaboration, 63The MINERvA Collaboration, 64The MINERvA Collaboration, 65The MINERvA Collaboration, 66The MINERvA Collaboration, 67The MINERvA Collaboration, 68The MINERvA Collaboration, 69The MINERvA Collaboration, 70The MINERvA Collaboration, 71The MINERvA Collaboration, 72The MINERvA Collaboration, 73The MINERvA Collaboration, 74The MINERvA Collaboration, 75The MINERvA Collaboration, 76The MINERvA Collaboration, 77The MINERvA Collaboration, 78The MINERvA Collaboration, 79The MINERvA Collaboration, 80The MINERvA Collaboration, 81The MINERvA Collaboration

Charged pion production via charged current $\nu_{\mu}$ interactions on plastic (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W $<$ 1.4 GeV are selected to isolate single pion production, which is expected to occur primarily through the $\Delta(1232)$ resonance. Read More

2014Mar
Affiliations: 1The MINERvA Collaboration, 2The MINERvA Collaboration, 3The MINERvA Collaboration, 4The MINERvA Collaboration, 5The MINERvA Collaboration, 6The MINERvA Collaboration, 7The MINERvA Collaboration, 8The MINERvA Collaboration, 9The MINERvA Collaboration, 10The MINERvA Collaboration, 11The MINERvA Collaboration, 12The MINERvA Collaboration, 13The MINERvA Collaboration, 14The MINERvA Collaboration, 15The MINERvA Collaboration, 16The MINERvA Collaboration, 17The MINERvA Collaboration, 18The MINERvA Collaboration, 19The MINERvA Collaboration, 20The MINERvA Collaboration, 21The MINERvA Collaboration, 22The MINERvA Collaboration, 23The MINERvA Collaboration, 24The MINERvA Collaboration, 25The MINERvA Collaboration, 26The MINERvA Collaboration, 27The MINERvA Collaboration, 28The MINERvA Collaboration, 29The MINERvA Collaboration, 30The MINERvA Collaboration, 31The MINERvA Collaboration, 32The MINERvA Collaboration, 33The MINERvA Collaboration, 34The MINERvA Collaboration, 35The MINERvA Collaboration, 36The MINERvA Collaboration, 37The MINERvA Collaboration, 38The MINERvA Collaboration, 39The MINERvA Collaboration, 40The MINERvA Collaboration, 41The MINERvA Collaboration, 42The MINERvA Collaboration, 43The MINERvA Collaboration, 44The MINERvA Collaboration, 45The MINERvA Collaboration, 46The MINERvA Collaboration, 47The MINERvA Collaboration, 48The MINERvA Collaboration, 49The MINERvA Collaboration, 50The MINERvA Collaboration, 51The MINERvA Collaboration, 52The MINERvA Collaboration, 53The MINERvA Collaboration, 54The MINERvA Collaboration, 55The MINERvA Collaboration, 56The MINERvA Collaboration, 57The MINERvA Collaboration, 58The MINERvA Collaboration, 59The MINERvA Collaboration, 60The MINERvA Collaboration, 61The MINERvA Collaboration, 62The MINERvA Collaboration, 63The MINERvA Collaboration, 64The MINERvA Collaboration, 65The MINERvA Collaboration, 66The MINERvA Collaboration, 67The MINERvA Collaboration, 68The MINERvA Collaboration, 69The MINERvA Collaboration, 70The MINERvA Collaboration, 71The MINERvA Collaboration, 72The MINERvA Collaboration, 73The MINERvA Collaboration, 74The MINERvA Collaboration, 75The MINERvA Collaboration, 76The MINERvA Collaboration, 77The MINERvA Collaboration

We present measurements of $\nu_{\mu}$ charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies $2=8~GeV$, which have a reconstructed $\mu^{-}$ scattering angle less than $17^\circ$ to extract ratios of inclusive total cross sections as a function of neutrino energy $E_{\nu}$ and flux-integrated differential cross sections with respect to the Bjorken scaling variable $x$. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Read More

2013May

The MINERvA experiment is designed to perform precision studies of neutrino-nucleus scattering using $\nu_\mu$ and ${\bar\nu}_\mu$ neutrinos incident at 1-20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the \minerva detector and describes the {\em ex situ} and {\em in situ} techniques employed to characterize the detector and monitor its performance. The detector is comprised of a finely-segmented scintillator-based inner tracking region surrounded by electromagnetic and hadronic sampling calorimetry. Read More

2013May
Authors: The MINERvA collaboration, L. Fields, J. Chvojka, L. Aliaga, O. Altinok, B. Baldin, A. Baumbaugh, A. Bodek, D. Boehnlein, S. Boyd, R. Bradford, W. K. Brooks, H. Budd, A. Butkevich, D. A. Martinez Caicedo, C. M. Castromonte, M. E. Christy, H. Chung, M. Clark, H. da Motta, D. S. Damiani, I. Danko, M. Datta, M. Day, R. DeMaat, J. Devan, E. Draeger, S. A. Dytman, G. A. Díaz, B. Eberly, D. A. Edmondson, J. Felix, T. Fitzpatrick, G. A. Fiorentini, A. M. Gago, H. Gallagher, C. A. George, J. A. Gielata, C. Gingu, B. Gobbi, R. Gran, N. Grossman, J. Hanson, D. A. Harris, J. Heaton, A. Higuera, I. J. Howley, K. Hurtado, M. Jerkins, T. Kafka, J. Kaisen, M. O. Kanter, C. E. Keppel, J. Kilmer, M. Kordosky, A. H. Krajeski, S. A. Kulagin, T. Le, H. Lee, A. G. Leister, G. Locke, G. Maggi, E. Maher, S. Manly, W. A. Mann, C. M. Marshall, K. S. McFarland, C. L. McGivern, A. M. McGowan, A. Mislivec, J. G. Morfín, J. Mousseau, D. Naples, J. K. Nelson, G. Niculescu, I. Niculescu, N. Ochoa, C. D. O'Connor, J. Olsen, B. Osmanov, J. Osta, J. L. Palomino, V. Paolone, J. Park, C. E. Patrick, G. N. Perdue, C. Peña, L. Rakotondravohitra, R. D. Ransome, H. Ray, L. Ren, P. A. Rodrigues, C. Rude, K. E. Sassin, H. Schellman, D. W. Schmitz, R. M. Schneider, E. C. Schulte, C. Simon, F. D. Snider, M. C. Snyder, J. T. Sobczyk, C. J. Solano Salinas, N. Tagg, W. Tan, B. G. Tice, G. Tzanakos, J. P. Velásquez, J. Walding, T. Walton, J. Wolcott, B. A. Wolthuis, N. Woodward, G. Zavala, H. B. Zeng, D. Zhang, L. Y. Zhu, B. P. Ziemer

We have isolated muon anti-neutrino charged-current quasi-elastic interactions occurring in the segmented scintillator tracking region of the MINERvA detector running in the NuMI neutrino beam at Fermilab. We measure the flux-averaged differential cross-section, d{\sigma}/dQ^2, and compare to several theoretical models of quasi-elastic scattering. Good agreement is obtained with a model where the nucleon axial mass, M_A, is set to 0. Read More

2013May
Authors: The MINERvA collaboration, G. A. Fiorentini, D. W. Schmitz, P. A. Rodrigues, L. Aliaga, O. Altinok, B. Baldin, A. Baumbaugh, A. Bodek, D. Boehnlein, S. Boyd, R. Bradford, W. K. Brooks, H. Budd, A. Butkevich, D. A. Martinez Caicedo, C. M. Castromonte, M. E. Christy, H. Chung, J. Chvojka, M. Clark, H. da Motta, D. S. Damiani, I. Danko, M. Datta, M. Day, R. DeMaat, J. Devan, E. Draeger, S. A. Dytman, G. A. Díaz, B. Eberly, D. A. Edmondson, J. Felix, T. Fitzpatrick, L. Fields, A. M. Gago, H. Gallagher, C. A. George, J. A. Gielata, C. Gingu, B. Gobbi, R. Gran, N. Grossman, J. Hanson, D. A. Harris, J. Heaton, A. Higuera, I. J. Howley, K. Hurtado, M. Jerkins, T. Kafka, J. Kaisen, M. O. Kanter, C. E. Keppel, J. Kilmer, M. Kordosky, A. H. Krajeski, S. A. Kulagin, T. Le, H. Lee, A. G. Leister, G. Locke, G. Maggi, E. Maher, S. Manly, W. A. Mann, C. M. Marshall, K. S. McFarland, C. L. McGivern, A. M. McGowan, A. Mislivec, J. G. Morfń, J. Mousseau, D. Naples, J. K. Nelson, G. Niculescu, I. Niculescu, N. Ochoa, C. D. O'Connor, J. Olsen, B. Osmanov, J. Osta, J. L. Palomino, V. Paolone, J. Park, C. E. Patrick, G. N. Perdue, C. Peña, L. Rakotondravohitra, R. D. Ransome, H. Ray, L. Ren, C. Rude, K. E. Sassin, H. Schellman, R. M. Schneider, E. C. Schulte, C. Simon, F. D. Snider, M. C. Snyder, J. T. Sobczyk, C. J. Solano Salinas, N. Tagg, W. Tan, B. G. Tice, G. Tzanakos, J. P. Velásquez, J. Walding, T. Walton, J. Wolcott, B. A. Wolthuis, N. Woodward, G. Zavala, H. B. Zeng, D. Zhang, L. Y. Zhu, B. P. Ziemer

We report a study of muon neutrino charged-current quasi-elastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a {\mu}^- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross-section, d{\sigma}/dQ^2, and study the low energy particle content of the final state. Read More

MINER$\nu$A (Main INjector ExpeRiment $\nu$-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINER$\nu$A employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINER$\nu$A data acquisition system (DAQ) including the read-out electronics, software, and computing architecture. Read More

2012Mar

Beams of neutrinos have been proposed as a vehicle for communications under unusual circumstances, such as direct point-to-point global communication, communication with submarines, secure communications and interstellar communication. We report on the performance of a low-rate communications link established using the NuMI beam line and the MINERvA detector at Fermilab. The link achieved a decoded data rate of 0. Read More

Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Read More