# B. D. Nelson - University of Tuebingen

## Contact Details

NameB. D. Nelson |
||

AffiliationUniversity of Tuebingen |
||

CityTÃ¼bingen |
||

CountryGermany |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (20) Mathematics - Operator Algebras (9) High Energy Physics - Theory (9) Earth and Planetary Astrophysics (7) Computer Science - Learning (5) High Energy Physics - Experiment (4) Computer Science - Cryptography and Security (4) Mathematics - Algebraic Geometry (4) Statistics - Machine Learning (2) Physics - Instrumentation and Detectors (2) Mathematics - Functional Analysis (2) Mathematics - Probability (2) Cosmology and Nongalactic Astrophysics (2) Quantitative Biology - Biomolecules (1) High Energy Astrophysical Phenomena (1) Astrophysics of Galaxies (1) Computer Science - Computer Science and Game Theory (1) Solar and Stellar Astrophysics (1) Instrumentation and Methods for Astrophysics (1) Mathematics - Numerical Analysis (1) Physics - Plasma Physics (1) Computer Science - Distributed; Parallel; and Cluster Computing (1) Computer Science - Mathematical Software (1) Physics - Computational Physics (1) |

## Publications Authored By B. D. Nelson

In this article, we study a form of free transport for the interpolated free group factors, extending the work of Guionnet and Shlyakhtenko for the usual free group factors. Our model for the interpolated free group factors comes from a canonical finite von Neumann algebra $\mathcal{M}(\Gamma, \mu)$ associated to a finite, connected, weighted graph $(\Gamma,V,E, \mu)$. With this model, we use an operator-valued version of Voiculescu's free difference quotient to state a Schwinger-Dyson equation which is valid for the generators of $\mathcal{M}(\Gamma, \mu)$. Read More

We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system and produce high-fidelity future state predictions. Read More

We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and $\Delta N_{\text{eff}}$ bounds. Read More

We report 1212 radial-velocity (RV) measurements obtained in the years 2009-2013 using an iodine cell for the spectroscopic binary nu Octantis (K1III/IV). This system (a_bin~2.6 au, P~1050 days) is conjectured to have a Jovian planet with a semi-major axis half that of the binary host. Read More

We introduce a free version of the Stein kernel, relative to a semicircular law. We use it to obtain a free counterpart of the HSI inequality of Ledoux, Peccatti and Nourdin, which is an improvement of the free logarithmic Sobolev inequality of Biane and Speicher, as well as a rate of convergence in the (multivariate) entropic free Central Limit Theorem. We also compute the free Stein kernels for several relevant families of self-adjoint operators. Read More

We argue, based on typical properties of known solutions of string/$M$-theory, that the lightest supersymmetric particle of the visible sector will not be stable. In other words, dark matter is {\em not} a particle with Standard Model quantum numbers, such as a WIMP. The argument is simple and based on the typical occurrence of a) hidden sectors, b) interactions between the Standard Model (visible) sector and these hidden sectors, and c) the lack of an argument against massive neutral hidden sector particles being lighter than the lightest visible supersymmetric particle. Read More

Suppose $M$ is a von Neumann algebra equipped with a faithful normal state $\varphi$ and generated by a finite set $G=G^*$, $|G|\geq 2$. We show that if $G$ consists of eigenvectors of the modular operator $\Delta_\varphi$ with finite free Fisher information, then the centralizer $M^\varphi$ is a $\mathrm{II}_1$ factor and $M$ is either a type $\mathrm{II}_1$ factor or a type $\mathrm{III}_\lambda$ factor, $0<\lambda\leq 1$, depending on the eigenvalues of $G$. Furthermore, $(M^\varphi)'\cap M=\mathbb{C}$, $M^\varphi$ does not have property $\Gamma$, and $M$ is full provided it is type $\mathrm{III}_\lambda$, $0<\lambda<1$. Read More

We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields. We find that the traditional R-parity assignments of the MSSM more readily accommodate the neutrino see-saw mechanism with non-trivial geometry than those superpotentials that violate R-parity. Read More

We extend the free monotone transport theorem of Guionnet and Shlyakhtenko to
the case of infinite variables. As a first application, we provide a criterion
for when mixed $q$-Gaussian algebras are isomorphic to $L(\mathbb{F}_\infty)$;
namely, when the structure array $Q$ of a mixed $q$-Gaussian algebra has
uniformly small entries that decay sufficiently rapidly. Here a mixed
$q$-Gaussian algebra with structure array $Q=(q_{ij})_{i,j\in\mathbb{N}}$ is
the von Neumann algebra generated by $X_n^Q=l_n+l_n^*, n\in\mathbb{N}$ and
$(l_n)$ are the Fock space representations of the commutation relation
$l_i^*l_j-q_{ij}l_jl_i^*=\delta_{i=j}, i,j\in\mathbb{N}$, $-1

We complete the study of a class of string-motivated effective supergravity theories in which modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected mirage mediation (DMM), where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection experiments. Read More

Light stops consistent with the Higgs boson mass of $\sim126\,{\rm GeV}$ are investigated within the framework of minimal supergravity. It is shown that models with light stops which are also consistent with the thermal relic density constraints require stop coannihilation with the neutralino LSP. The analysis shows that the residual set of parameter points with light stops satisfying both the Higgs mass and the relic density constraints lie within a series of thin strips in the $m_0-m_{1/2}$ plane for different values of $A_0/m_0$. Read More

We consider the mixed $q$-Gaussian algebras introduced by Speicher which are
generated by the variables $X_i=l_i+l_i^*,i=1,\ldots,N$, where $l_i^*
l_j-q_{ij}l_j l_i^*=\delta_{i,j}$ and $-1

We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demanding long-term orbital stability. Our dataset incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, HARPS, and Keck HIRES as well as previously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. Read More

We perform a comprehensive study of models of dark matter (DM) in a Universe with a non-thermal cosmological history, i.e with a phase of pressure-less matter domination before the onset of big-bang nucleosynethesis (BBN). Such cosmological histories are generically predicted by UV completions that contain gravitationally coupled scalar fields (moduli). Read More

We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. Read More

Kreuzer and Skarke famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, in a companion online database (see http://nuweb1. Read More

We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. Read More

We present an intriguing and precise interplay between algebraic geometry and the phenomenology of generations of particles. Using the electroweak sector of the MSSM as a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple generations of Standard Model matter and Higgs doublets. The space is shown to have Calabi-Yau, Grassmannian, and toric signatures which sensitively depend on the number of generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos. Read More

In this paper, we develop the theory of bi-freeness in an amalgamated setting. We construct the operator-valued bi-free cumulant functions, and show that the vanishing of mixed cumulants is necessary and sufficient for bi-free independence. Further, we develop a multiplicative convolution for operator-valued random variables and explore ways to construct bi-free pairs of B-faces. Read More

Given a finite depth subfactor planar algebra $\mathcal{P}$ endowed with the graded $*$-algebra structures $\{Gr_k^+ \mathcal{P}\}_{k\in\mathbb{N}}$ of Guionnet, Jones, and Shlyakhtenko, there is a sequence of canonical traces $Tr_{k,+}$ on $Gr_k^+\mathcal{P}$ induced by the Temperley-Lieb diagrams and a sequence of trace-preserving embeddings into the bounded operators on a Hilbert space. Via these embeddings the $*$-algebras $\{Gr_k^+\mathcal{P}\}_{k\in \mathbb{N}}$ generate a tower of non-commutative probability spaces $\{M_{k,+}\}_{k\in\mathbb{N}}$ whose inclusions recover $\mathcal{P}$ as its standard invariant. We show that traces $Tr_{k,+}^{(v)}$ induced by certain small perturbations of the Temperley-Lieb diagrams yield trace-preserving embeddings of $Gr_k^+\mathcal{P}$ that generate the same tower $\{M_{k,+}\}_{k\in\mathbb{N}}$. Read More

We demonstrate that the notions of bi-free independence and combinatorial-bi-free independence of two-faced families are equivalent using a diagrammatic view of bi-non-crossing partitions. These diagrams produce an operator model on a Fock space suitable for representing any two-faced family of non-commutative random variables. Furthermore, using a Kreweras complement on bi-non-crossing partitions we establish the expected formulas for the multiplicative convolution of a bi-free pair of two-faced families. Read More

We present an updated study of the planets known to orbit 55 Cancri A using 1,418 high-precision radial velocity observations from four observatories (Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). Read More

We explain the origin of the Veronese surface in the vacuum moduli space geometry of the MSSM electroweak sector. While this result appeared many years ago using techniques of computational algebraic geometry, it has never been demonstrated analytically. Here, we present an analytical derivation of the vacuum geometry of the electroweak theory by understanding how the F- and D-term relations lead to the Veronese surface. Read More

Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. Read More

We continue the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In this installment we consider Type IIB string theory compactified on a Calabi-Yau orientifold in the presence of fluxes, in the manner originally formulated by Kachru, et al. We allow for a variety of potential uplift mechanisms and embeddings of the Standard Model field content into D3 and D7 brane configurations. Read More

In the 20+ years of Doppler observations of stars, scientists have uncovered a diverse population of extrasolar multi-planet systems. A common technique for characterizing the orbital elements of these planets is Markov chain Monte Carlo (MCMC), using a Keplerian model with random walk proposals and paired with the Metropolis-Hastings algorithm. For approximately a couple of dozen planetary systems with Doppler observations, there are strong planet-planet interactions due to the system being in or near a mean-motion resonance (MMR). Read More

We adapt the free monotone transport results of Guionnet and Shlyakhtenko to the type $\text{III}$ case. As a direct application, we obtain that the $q$-deformed Araki-Woods algebras are isomorphic (for sufficiently small $|q|$). Read More

Differential privacy formalises privacy-preserving mechanisms that provide access to a database. We pose the question of whether Bayesian inference itself can be used directly to provide private access to data, with no modification. The answer is affirmative: under certain conditions on the prior, sampling from the posterior distribution can be used to achieve a desired level of privacy and utility. Read More

We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). The case of heterotic string theory, in which the dilaton is stabilized via non-perturbative corrections to the Kahler metric, will be considered first. This model is highly constrained and therefore predictive. Read More

We present Swarm-NG, a C++ library for the efficient direct integration of many n-body systems using highly-parallel Graphics Processing Unit (GPU), such as NVIDIA's Tesla T10 and M2070 GPUs. While previous studies have demonstrated the benefit of GPUs for n-body simulations with thousands to millions of bodies, Swarm-NG focuses on many few-body systems, e.g. Read More

We describe an efficient, construction independent, algorithmic test to determine whether Calabi--Yau threefolds admit a structure compatible with the Large Volume moduli stabilization scenario of type IIB superstring theory. Using the algorithm, we scan complete intersection and toric hypersurface Calabi-Yau threefolds with $2 \leq h^{1,1} \le 4$ and deduce that 418 among 4434 manifolds have a Large Volume Limit with a single large four-cycle. We describe major extensions to this survey, which are currently underway. Read More

**Affiliations:**

^{1}University of Cagliari,

^{2}University of Tuebingen,

^{3}University of Tuebingen

We investigate a family of poisoning attacks against Support Vector Machines (SVM). Such attacks inject specially crafted training data that increases the SVM's test error. Central to the motivation for these attacks is the fact that most learning algorithms assume that their training data comes from a natural or well-behaved distribution. Read More

**Authors:**Scott W. Fleming, Jian Ge, Rory Barnes, Thomas G. Beatty, Justin R. Crepp, Nathan De Lee, Massimiliano Esposito, Bruno Femenia, Leticia Ferreira, Bruce Gary, B. Scott Gaudi, Luan Ghezzi, Jonay I. GonzÃ¡lez HernÃ¡ndez, Leslie Hebb, Peng Jiang, Brian Lee, Ben Nelson, Gustavo F. Porto de Mello, Benjamin J. Shappee, Keivan Stassun, Todd A. Thompson, Benjamin M. Tofflemire, John P. Wisniewski, W. Michael Wood-Vasey, Eric Agol, Carlos Allende Prieto, Dmitry Bizyaev, Howard Brewington, Phillip A. Cargile, Louis Coban, Korena S. Costello, Luis N. da Costa, Melanie L. Good, Nelson Hua, Stephen R. Kane, Gary R. Lander, Jian Liu, Bo Ma, Suvrath Mahadevan, Marcio A. G. Maia, Elena Malanushenko, Viktor Malanushenko, Demitri Muna, Duy Cuong Nguyen, Daniel Oravetz, Martin Paegert, Kaike Pan, Joshua Pepper, Rafael Rebolo, Eric J. Roebuck, Basilio X. Santiago, Donald P. Schneider, Alaina Shelden, Audrey Simmons, Thirupathi Sivarani, Stephanie Snedden, Chelsea L. M. Vincent, Xiaoke Wan, Ji Wang, Benjamin A. Weaver, Gwendolyn M. Weaver, Bo Zhao

**Category:**Solar and Stellar Astrophysics

We report the discovery via radial velocity of a short-period (P = 2.430420 \pm 0.000006 days) companion to the F-type main sequence star TYC 2930-00872-1. Read More

We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. Read More

**Authors:**K. Abe, N. Abgrall, Y. Ajima, H. Aihara, J. B. Albert, C. Andreopoulos, B. Andrieu, M. D. Anerella, S. Aoki, O. Araoka, J. Argyriades, A. Ariga, T. Ariga, S. Assylbekov, D. Autiero, A. Badertscher, M. Barbi, G. J. Barker, G. Barr, M. Bass, M. Batkiewicz, F. Bay, S. Bentham, V. Berardi, B. E. Berger, I. Bertram, M. Besnier, J. Beucher, D. Beznosko, S. Bhadra, F. d. M. Blaszczyk, J. Blocki, A. Blondel, C. Bojechko, J. Bouchez, S. B. Boyd, A. Bravar, C. Bronner, D. G. Brook-Roberge, N. Buchanan, H. Budd, D. Calvet, S. L. Cartwright, A. Carver, R. Castillo, M. G. Catanesi, A. Cazes, A. Cervera, C. Chavez, S. Choi, G. Christodoulou, J. Coleman, G. Collazuol, W. Coleman, K. Connolly, A. Curioni, A. Dabrowska, I. Danko, R. Das, G. S. Davies, S. Davis, M. Day, G. De Rosa, J. P. A. M. de AndrÃ©, P. de Perio, T. Dealtry, A. Delbart, C. Densham, F. Di Lodovico, S. Di Luise, P. Dinh Tran, J. Dobson, U. Dore, O. Drapier, F. Dufour, J. Dumarchez, S. Dytman, M. Dziewiecki, M. Dziomba, S. Emery, A. Ereditato, J. E. Escallier, L. Escudero, L. S. Esposito, M. Fechner, A. Ferrero, A. J. Finch, E. Frank, Y. Fujii, Y. Fukuda, V. Galymov, G. L. Ganetis, F. C. Gannaway, A. Gaudin, A. Gendotti, M. George, S. Giffin, C. Giganti, K. Gilje, A. K. Ghosh, T. Golan, M. Goldhaber, J. J. Gomez-Cadenas, S. Gomi, M. Gonin, N. Grant, A. Grant, P. Gumplinger, P. Guzowski, A. Haesler, M. D. Haigh, K. Hamano, C. Hansen, D. Hansen, T. Hara, P. F. Harrison, B. Hartfiel, M. Hartz, T. Haruyama, T. Hasegawa, N. C. Hastings, A. Hatzikoutelis, K. Hayashi, Y. Hayato, C. Hearty, R. L. Helmer, R. Henderson, N. Higashi, J. Hignight, A. Hillairet, E. Hirose, J. Holeczek, S. Horikawa, A. Hyndman, A. K. Ichikawa, K. Ieki, M. Ieva, M. Iida, M. Ikeda, J. Ilic, J. Imber, T. Ishida, C. Ishihara, T. Ishii, S. J. Ives, M. Iwasaki, K. Iyogi, A. Izmaylov, B. Jamieson, R. A. Johnson, K. K. Joo, G. V. Jover-Manas, C. K. Jung, H. Kaji, T. Kajita, H. Kakuno, J. Kameda, K. Kaneyuki, D. Karlen, K. Kasami, I. Kato, H. Kawamuko, E. Kearns, M. Khabibullin, F. Khanam, A. Khotjantsev, D. Kielczewska, T. Kikawa, J. Kim, J. Y. Kim, S. B. Kim, N. Kimura, B. Kirby, J. Kisiel, P. Kitching, T. Kobayashi, G. Kogan, S. Koike, A. Konaka, L. L. Kormos, A. Korzenev, K. Koseki, Y. Koshio, Y. Kouzuma, K. Kowalik, V. Kravtsov, I. Kreslo, W. Kropp, H. Kubo, J. Kubota, Y. Kudenko, N. Kulkarni, Y. Kurimoto, R. Kurjata, T. Kutter, J. Lagoda, K. Laihem, M. Laveder, K. P. Lee, P. T. Le, J. M. Levy, C. Licciardi, I. T. Lim, T. Lindner, R. P. Litchfield, M. Litos, A. Longhin, G. D. Lopez, P. F. Loverre, L. Ludovici, T. Lux, M. Macaire, K. Mahn, Y. Makida, M. Malek, S. Manly, A. Marchionni, A. D. Marino, A. J. Marone, J. Marteau, J. F. Martin, T. Maruyama, T. Maryon, J. Marzec, P. Masliah, E. L. Mathie, C. Matsumura, K. Matsuoka, V. Matveev, K. Mavrokoridis, E. Mazzucato, N. McCauley, K. S. McFarland, C. McGrew, T. McLachlan, M. Messina, W. Metcalf, C. Metelko, M. Mezzetto, P. Mijakowski, C. A. Miller, A. Minamino, O. Mineev, S. Mine, A. D. Missert, G. Mituka, M. Miura, K. Mizouchi, L. Monfregola, F. Moreau, B. Morgan, S. Moriyama, A. Muir, A. Murakami, J. F. Muratore, M. Murdoch, S. Murphy, J. Myslik, N. Nagai, T. Nakadaira, M. Nakahata, T. Nakai, K. Nakajima, T. Nakamoto, K. Nakamura, S. Nakayama, T. Nakaya, D. Naples, M. L. Navin, B. Nelson, T. C. Nicholls, C. Nielsen, K. Nishikawa, H. Nishino, K. Nitta, T. Nobuhara, J. A. Nowak, Y. Obayashi, T. Ogitsu, H. Ohhata, T. Okamura, K. Okumura, T. Okusawa, S. M. Oser, M. Otani, R. A. Owen, Y. Oyama, T. Ozaki, M. Y. Pac, V. Palladino, V. Paolone, P. Paul, D. Payne, G. F. Pearce, J. D. Perkin, V. Pettinacci, F. Pierre, E. Poplawska, B. Popov, M. Posiadala, J. -M. Poutissou, R. Poutissou, P. Przewlocki, W. Qian, J. L. Raaf, E. Radicioni, P. N. Ratoff, T. M. Raufer, M. Ravonel, M. Raymond, F. Retiere, A. Robert, P. A. Rodrigues, E. Rondio, J. M. Roney, B. Rossi, S. Roth, A. Rubbia, D. Ruterbories, S. Sabouri, R. Sacco, K. Sakashita, F. SÃ¡nchez, A. Sarrat, K. Sasaki, K. Scholberg, J. Schwehr, M. Scott, D. I. Scully, Y. Seiya, T. Sekiguchi, H. Sekiya, M. Shibata, Y. Shimizu, M. Shiozawa, S. Short, M. Siyad, R. J. Smith, M. Smy, J. T. Sobczyk, H. Sobel, M. Sorel, A. Stahl, P. Stamoulis, J. Steinmann, B. Still, J. Stone, M. Stodulski, C. Strabel, R. Sulej, A. Suzuki, K. Suzuki, S. Suzuki, S. Y. Suzuki, Y. Suzuki, Y. Suzuki, J. Swierblewski, T. Szeglowski, M. Szeptycka, R. Tacik, M. Tada, M. Taguchi, S. Takahashi, A. Takeda, Y. Takenaga, Y. Takeuchi, K. Tanaka, H. A. Tanaka, M. Tanaka, M. M. Tanaka, N. Tanimoto, K. Tashiro, I. Taylor, A. Terashima, D. Terhorst, R. Terri, L. F. Thompson, A. Thorley, W. Toki, S. Tobayama, T. Tomaru, Y. Totsuka, C. Touramanis, T. Tsukamoto, M. Tzanov, Y. Uchida, K. Ueno, A. Vacheret, M. Vagins, G. Vasseur, T. Wachala, J. J. Walding, A. V. Waldron, C. W. Walter, P. J. Wanderer, J. Wang, M. A. Ward, G. P. Ward, D. Wark, M. O. Wascko, A. Weber, R. Wendell, N. West, L. H. Whitehead, G. WikstrÃ¶m, R. J. Wilkes, M. J. Wilking, Z. Williamson, J. R. Wilson, R. J. Wilson, T. Wongjirad, S. Yamada, Y. Yamada, A. Yamamoto, K. Yamamoto, Y. Yamanoi, H. Yamaoka, T. Yamauchi, C. Yanagisawa, T. Yano, S. Yen, N. Yershov, M. Yokoyama, T. Yuan, A. Zalewska, J. Zalipska, L. Zambelli, K. Zaremba, M. Ziembicki, E. D. Zimmerman, M. Zito, J. Zmuda

**Category:**Physics - Instrumentation and Detectors

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. Read More

**Authors:**T2K Collaboration, K. Abe

^{1}, N. Abgrall

^{2}, Y. Ajima

^{3}, H. Aihara

^{4}, J. B. Albert

^{5}, C. Andreopoulos

^{6}, B. Andrieu

^{7}, S. Aoki

^{8}, O. Araoka

^{9}, J. Argyriades

^{10}, A. Ariga

^{11}, T. Ariga

^{12}, S. Assylbekov

^{13}, D. Autiero

^{14}, A. Badertscher

^{15}, M. Barbi

^{16}, G. J. Barker

^{17}, G. Barr

^{18}, M. Bass

^{19}, F. Bay

^{20}, S. Bentham

^{21}, V. Berardi

^{22}, B. E. Berger

^{23}, I. Bertram

^{24}, M. Besnier

^{25}, J. Beucher

^{26}, D. Beznosko

^{27}, S. Bhadra

^{28}, F. d. M. Blaszczyk

^{29}, A. Blondel

^{30}, C. Bojechko

^{31}, J. Bouchez

^{32}, S. B. Boyd

^{33}, A. Bravar

^{34}, C. Bronner

^{35}, D. G. Brook-Roberge

^{36}, N. Buchanan

^{37}, H. Budd

^{38}, D. Calvet

^{39}, S. L. Cartwright

^{40}, A. Carver

^{41}, R. Castillo

^{42}, M. G. Catanesi

^{43}, A. Cazes

^{44}, A. Cervera

^{45}, C. Chavez

^{46}, S. Choi

^{47}, G. Christodoulou

^{48}, J. Coleman

^{49}, W. Coleman

^{50}, G. Collazuol

^{51}, K. Connolly

^{52}, A. Curioni

^{53}, A. Dabrowska

^{54}, I. Danko

^{55}, R. Das

^{56}, G. S. Davies

^{57}, S. Davis

^{58}, M. Day

^{59}, G. DeRosa

^{60}, J. P. A. M. de Andre

^{61}, P. dePerio

^{62}, A. Delbart

^{63}, C. Densham

^{64}, F. DiLodovico

^{65}, S. DiLuise

^{66}, P. Dinh Tran

^{67}, J. Dobson

^{68}, U. Dore

^{69}, O. Drapier

^{70}, F. Dufour

^{71}, J. Dumarchez

^{72}, S. Dytman

^{73}, M. Dziewiecki

^{74}, M. Dziomba

^{75}, S. Emery

^{76}, A. Ereditato

^{77}, L. Escudero

^{78}, L. S. Esposito

^{79}, M. Fechner

^{80}, A. Ferrero

^{81}, A. J. Finch

^{82}, E. Frank

^{83}, Y. Fujii

^{84}, Y. Fukuda

^{85}, V. Galymov

^{86}, F. C. Gannaway

^{87}, A. Gaudin

^{88}, A. Gendotti

^{89}, M. George

^{90}, S. Giffin

^{91}, C. Giganti

^{92}, K. Gilje

^{93}, T. Golan

^{94}, M. Goldhaber

^{95}, J. J. Gomez-Cadenas

^{96}, M. Gonin

^{97}, N. Grant

^{98}, A. Grant

^{99}, P. Gumplinger

^{100}, P. Guzowski

^{101}, A. Haesler

^{102}, M. D. Haigh

^{103}, K. Hamano

^{104}, C. Hansen

^{105}, D. Hansen

^{106}, T. Hara

^{107}, P. F. Harrison

^{108}, B. Hartfiel

^{109}, M. Hartz

^{110}, T. Haruyama

^{111}, T. Hasegawa

^{112}, N. C. Hastings

^{113}, S. Hastings

^{114}, A. Hatzikoutelis

^{115}, K. Hayashi

^{116}, Y. Hayato

^{117}, C. Hearty

^{118}, R. L. Helmer

^{119}, R. Henderson

^{120}, N. Higashi

^{121}, J. Hignight

^{122}, E. Hirose

^{123}, J. Holeczek

^{124}, S. Horikawa

^{125}, A. Hyndman

^{126}, A. K. Ichikawa

^{127}, K. Ieki

^{128}, M. Ieva

^{129}, M. Iida

^{130}, M. Ikeda

^{131}, J. Ilic

^{132}, J. Imber

^{133}, T. Ishida

^{134}, C. Ishihara

^{135}, T. Ishii

^{136}, S. J. Ives

^{137}, M. Iwasaki

^{138}, K. Iyogi

^{139}, A. Izmaylov

^{140}, B. Jamieson

^{141}, R. A. Johnson

^{142}, K. K. Joo

^{143}, G. V. Jover-Manas

^{144}, C. K. Jung

^{145}, H. Kaji

^{146}, T. Kajita

^{147}, H. Kakuno

^{148}, J. Kameda

^{149}, K. Kaneyuki

^{150}, D. Karlen

^{151}, K. Kasami

^{152}, I. Kato

^{153}, E. Kearns

^{154}, M. Khabibullin

^{155}, F. Khanam

^{156}, A. Khotjantsev

^{157}, D. Kielczewska

^{158}, T. Kikawa

^{159}, J. Kim

^{160}, J. Y. Kim

^{161}, S. B. Kim

^{162}, N. Kimura

^{163}, B. Kirby

^{164}, J. Kisiel

^{165}, P. Kitching

^{166}, T. Kobayashi

^{167}, G. Kogan

^{168}, S. Koike

^{169}, A. Konaka

^{170}, L. L. Kormos

^{171}, A. Korzenev

^{172}, K. Koseki

^{173}, Y. Koshio

^{174}, Y. Kouzuma

^{175}, K. Kowalik

^{176}, V. Kravtsov

^{177}, I. Kreslo

^{178}, W. Kropp

^{179}, H. Kubo

^{180}, Y. Kudenko

^{181}, N. Kulkarni

^{182}, R. Kurjata

^{183}, T. Kutter

^{184}, J. Lagoda

^{185}, K. Laihem

^{186}, M. Laveder

^{187}, K. P. Lee

^{188}, P. T. Le

^{189}, J. M. Levy

^{190}, C. Licciardi

^{191}, I. T. Lim

^{192}, T. Lindner

^{193}, R. P. Litchfield

^{194}, M. Litos

^{195}, A. Longhin

^{196}, G. D. Lopez

^{197}, P. F. Loverre

^{198}, L. Ludovici

^{199}, T. Lux

^{200}, M. Macaire

^{201}, K. Mahn

^{202}, Y. Makida

^{203}, M. Malek

^{204}, S. Manly

^{205}, A. Marchionni

^{206}, A. D. Marino

^{207}, J. Marteau

^{208}, J. F. Martin

^{209}, T. Maruyama

^{210}, T. Maryon

^{211}, J. Marzec

^{212}, P. Masliah

^{213}, E. L. Mathie

^{214}, C. Matsumura

^{215}, K. Matsuoka

^{216}, V. Matveev

^{217}, K. Mavrokoridis

^{218}, E. Mazzucato

^{219}, N. McCauley

^{220}, K. S. McFarland

^{221}, C. McGrew

^{222}, T. McLachlan

^{223}, M. Messina

^{224}, W. Metcalf

^{225}, C. Metelko

^{226}, M. Mezzetto

^{227}, P. Mijakowski

^{228}, C. A. Miller

^{229}, A. Minamino

^{230}, O. Mineev

^{231}, S. Mine

^{232}, A. D. Missert

^{233}, G. Mituka

^{234}, M. Miura

^{235}, K. Mizouchi

^{236}, L. Monfregola

^{237}, F. Moreau

^{238}, B. Morgan

^{239}, S. Moriyama

^{240}, A. Muir

^{241}, A. Murakami

^{242}, M. Murdoch

^{243}, S. Murphy

^{244}, J. Myslik

^{245}, T. Nakadaira

^{246}, M. Nakahata

^{247}, T. Nakai

^{248}, K. Nakajima

^{249}, T. Nakamoto

^{250}, K. Nakamura

^{251}, S. Nakayama

^{252}, T. Nakaya

^{253}, D. Naples

^{254}, M. L. Navin

^{255}, B. Nelson

^{256}, T. C. Nicholls

^{257}, K. Nishikawa

^{258}, H. Nishino

^{259}, J. A. Nowak

^{260}, M. Noy

^{261}, Y. Obayashi

^{262}, T. Ogitsu

^{263}, H. Ohhata

^{264}, T. Okamura

^{265}, K. Okumura

^{266}, T. Okusawa

^{267}, S. M. Oser

^{268}, M. Otani

^{269}, R. A. Owen

^{270}, Y. Oyama

^{271}, T. Ozaki

^{272}, M. Y. Pac

^{273}, V. Palladino

^{274}, V. Paolone

^{275}, P. Paul

^{276}, D. Payne

^{277}, G. F. Pearce

^{278}, J. D. Perkin

^{279}, V. Pettinacci

^{280}, F. Pierre

^{281}, E. Poplawska

^{282}, B. Popov

^{283}, M. Posiadala

^{284}, J. -M. Poutissou

^{285}, R. Poutissou

^{286}, P. Przewlocki

^{287}, W. Qian

^{288}, J. L. Raaf

^{289}, E. Radicioni

^{290}, P. N. Ratoff

^{291}, T. M. Raufer

^{292}, M. Ravonel

^{293}, M. Raymond

^{294}, F. Retiere

^{295}, A. Robert

^{296}, P. A. Rodrigues

^{297}, E. Rondio

^{298}, J. M. Roney

^{299}, B. Rossi

^{300}, S. Roth

^{301}, A. Rubbia

^{302}, D. Ruterbories

^{303}, S. Sabouri

^{304}, R. Sacco

^{305}, K. Sakashita

^{306}, F. Sanchez

^{307}, A. Sarrat

^{308}, K. Sasaki

^{309}, K. Scholberg

^{310}, J. Schwehr

^{311}, M. Scott

^{312}, D. I. Scully

^{313}, Y. Seiya

^{314}, T. Sekiguchi

^{315}, H. Sekiya

^{316}, M. Shibata

^{317}, Y. Shimizu

^{318}, M. Shiozawa

^{319}, S. Short

^{320}, M. Syiad

^{321}, R. J. Smith

^{322}, M. Smy

^{323}, J. T. Sobczyk

^{324}, H. Sobel

^{325}, M. Sorel

^{326}, A. Stahl

^{327}, P. Stamoulis

^{328}, J. Steinmann

^{329}, B. Still

^{330}, J. Stone

^{331}, C. Strabel

^{332}, L. R. Sulak

^{333}, R. Sulej

^{334}, P. Sutcliffe

^{335}, A. Suzuki

^{336}, K. Suzuki

^{337}, S. Suzuki

^{338}, S. Y. Suzuki

^{339}, Y. Suzuki

^{340}, Y. Suzuki

^{341}, T. Szeglowski

^{342}, M. Szeptycka

^{343}, R. Tacik

^{344}, M. Tada

^{345}, S. Takahashi

^{346}, A. Takeda

^{347}, Y. Takenaga

^{348}, Y. Takeuchi

^{349}, K. Tanaka

^{350}, H. A. Tanaka

^{351}, M. Tanaka

^{352}, M. M. Tanaka

^{353}, N. Tanimoto

^{354}, K. Tashiro

^{355}, I. Taylor

^{356}, A. Terashima

^{357}, D. Terhorst

^{358}, R. Terri

^{359}, L. F. Thompson

^{360}, A. Thorley

^{361}, W. Toki

^{362}, T. Tomaru

^{363}, Y. Totsuka

^{364}, C. Touramanis

^{365}, T. Tsukamoto

^{366}, M. Tzanov

^{367}, Y. Uchida

^{368}, K. Ueno

^{369}, A. Vacheret

^{370}, M. Vagins

^{371}, G. Vasseur

^{372}, T. Wachala

^{373}, J. J. Walding

^{374}, A. V. Waldron

^{375}, C. W. Walter

^{376}, P. J. Wanderer

^{377}, J. Wang

^{378}, M. A. Ward

^{379}, G. P. Ward

^{380}, D. Wark

^{381}, M. O. Wascko

^{382}, A. Weber

^{383}, R. Wendell

^{384}, N. West

^{385}, L. H. Whitehead

^{386}, G. Wikstrom

^{387}, R. J. Wilkes

^{388}, M. J. Wilking

^{389}, J. R. Wilson

^{390}, R. J. Wilson

^{391}, T. Wongjirad

^{392}, S. Yamada

^{393}, Y. Yamada

^{394}, A. Yamamoto

^{395}, K. Yamamoto

^{396}, Y. Yamanoi

^{397}, H. Yamaoka

^{398}, C. Yanagisawa

^{399}, T. Yano

^{400}, S. Yen

^{401}, N. Yershov

^{402}, M. Yokoyama

^{403}, A. Zalewska

^{404}, J. Zalipska

^{405}, L. Zambelli

^{406}, K. Zaremba

^{407}, M. Ziembicki

^{408}, E. D. Zimmerman

^{409}, M. Zito

^{410}, J. Zmuda

^{411}

**Affiliations:**

^{1}University of Tokyo,

^{2}University of Geneva,

^{3}High Energy Accelerator Research Organization,

^{4}University of Tokyo,

^{5}Duke University,

^{6}STFC Rutherford Appleton Laboratory,

^{7}UPMC, Universite Paris Diderot,

^{8}Kobe University,

^{9}High Energy Accelerator Research Organization,

^{10}University of Geneva,

^{11}University of Bern,

^{12}University of Bern,

^{13}Colorado State University,

^{14}Universite de Lyon,

^{15}ETH Zurich,

^{16}University of Regina,

^{17}University of Warwick,

^{18}Oxford University,

^{19}Colorado State University,

^{20}University of Bern,

^{21}Lancaster University,

^{22}INFN Sezione di Bari and Universita` e Politecnico di Bari,

^{23}Colorado State University,

^{24}Lancaster University,

^{25}Ecole Polytechnique IN2P3-CNRS,

^{26}IRFU CEA Saclay,

^{27}State University of New York at Stony Brook,

^{28}York University,

^{29}IRFU CEA Saclay,

^{30}University of Geneva,

^{31}University of Victoria,

^{32}8, deceased,

^{33}University of Warwick,

^{34}University of Geneva,

^{35}Ecole Polytechnique IN2P3-CNRS,

^{36}University of British Columbia,

^{37}Colorado State University,

^{38}University of Rochester,

^{39}IRFU CEA Saclay,

^{40}University of Sheffield,

^{41}University of Warwick,

^{42}Institut de Fisica d'Altes Energies,

^{43}INFN Sezione di Bari and Universita` e Politecnico di Bari,

^{44}Universite de Lyon,

^{45}IFIC,

^{46}University of Liverpool,

^{47}Seoul National University,

^{48}University of Liverpool,

^{49}University of Liverpool,

^{50}Louisiana State University,

^{51}INFN Sezione di Padova and Universit`a di Padova,

^{52}University of Washington,

^{53}ETH Zurich,

^{54}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{55}University of Pittsburgh,

^{56}Colorado State University,

^{57}Lancaster University,

^{58}University of Washington,

^{59}University of Rochester,

^{60}INFN Sezione di Napoli and Universita` di Napoli,

^{61}Ecole Polytechnique IN2P3-CNRS,

^{62}University of Toronto,

^{63}IRFU CEA Saclay,

^{64}STFC Rutherford Appleton Laboratory,

^{65}Queen Mary University of London,

^{66}ETH Zurich,

^{67}Ecole Polytechnique IN2P3-CNRS,

^{68}Imperial College London,

^{69}INFN Sezione di Roma and Universit`a di Roma "La Sapienza",

^{70}Ecole Polytechnique IN2P3-CNRS,

^{71}University of Geneva,

^{72}UPMC, Universite Paris Diderot,

^{73}University of Pittsburgh,

^{74}Warsaw University of Technology,

^{75}University of Washington,

^{76}IRFU CEA Saclay,

^{77}University of Bern,

^{78}IFIC,

^{79}ETH Zurich,

^{80}Duke University,

^{81}University of Geneva,

^{82}Lancaster University,

^{83}University of Bern,

^{84}High Energy Accelerator Research Organization,

^{85}Miyagi University of Education,

^{86}York University,

^{87}Queen Mary University of London,

^{88}University of Victoria,

^{89}ETH Zurich,

^{90}Queen Mary University of London,

^{91}University of Regina,

^{92}Institut de Fisica d'Altes Energies,

^{93}State University of New York at Stony Brook,

^{94}Wroclaw University,

^{95}6, deceased,

^{96}IFIC,

^{97}Ecole Polytechnique IN2P3-CNRS,

^{98}Lancaster University,

^{99}STFC Daresbury Laboratory,

^{100}TRIUMF,

^{101}Imperial College London,

^{102}University of Geneva,

^{103}Oxford University,

^{104}TRIUMF,

^{105}IFIC,

^{106}University of Pittsburgh,

^{107}Kobe University,

^{108}University of Warwick,

^{109}Louisiana State University,

^{110}York University,

^{111}High Energy Accelerator Research Organization,

^{112}High Energy Accelerator Research Organization,

^{113}University of Regina,

^{114}University of British Columbia,

^{115}Lancaster University,

^{116}High Energy Accelerator Research Organization,

^{117}University of Tokyo,

^{118}University of British Columbia,

^{119}TRIUMF,

^{120}TRIUMF,

^{121}High Energy Accelerator Research Organization,

^{122}State University of New York at Stony Brook,

^{123}High Energy Accelerator Research Organization,

^{124}University of Silesia,

^{125}ETH Zurich,

^{126}Queen Mary University of London,

^{127}Kyoto University,

^{128}Kyoto University,

^{129}Institut de Fisica d'Altes Energies,

^{130}High Energy Accelerator Research Organization,

^{131}Kyoto University,

^{132}STFC Rutherford Appleton Laboratory,

^{133}State University of New York at Stony Brook,

^{134}High Energy Accelerator Research Organization,

^{135}University of Tokyo,

^{136}High Energy Accelerator Research Organization,

^{137}Imperial College London,

^{138}University of Tokyo,

^{139}University of Tokyo,

^{140}Institute for Nuclear Research of the Russian Academy of Sciences,

^{141}University of British Columbia,

^{142}University of Colorado at Boulder,

^{143}Chonnam National University,

^{144}Institut de Fisica d'Altes Energies,

^{145}State University of New York at Stony Brook,

^{146}University of Tokyo,

^{147}University of Tokyo,

^{148}University of Tokyo,

^{149}University of Tokyo,

^{150}50, deceased,

^{151}University of Victoria,

^{152}High Energy Accelerator Research Organization,

^{153}TRIUMF,

^{154}Boston University,

^{155}Institute for Nuclear Research of the Russian Academy of Sciences,

^{156}Colorado State University,

^{157}Institute for Nuclear Research of the Russian Academy of Sciences,

^{158}University of Warsaw,

^{159}Kyoto University,

^{160}University of British Columbia,

^{161}Chonnam National University,

^{162}Seoul National University,

^{163}High Energy Accelerator Research Organization,

^{164}University of British Columbia,

^{165}University of Silesia,

^{166}University of Alberta,

^{167}High Energy Accelerator Research Organization,

^{168}Imperial College London,

^{169}High Energy Accelerator Research Organization,

^{170}TRIUMF,

^{171}Lancaster University,

^{172}University of Geneva,

^{173}High Energy Accelerator Research Organization,

^{174}University of Tokyo,

^{175}University of Tokyo,

^{176}The Andrzej Soltan Institute for Nuclear Studies,

^{177}Colorado State University,

^{178}University of Bern,

^{179}University of California,

^{180}Kyoto University,

^{181}Institute for Nuclear Research of the Russian Academy of Sciences,

^{182}Louisiana State University,

^{183}Warsaw University of Technology,

^{184}Louisiana State University,

^{185}The Andrzej Soltan Institute for Nuclear Studies,

^{186}RWTH Aachen University,

^{187}INFN Sezione di Padova and Universit`a di Padova,

^{188}University of Tokyo,

^{189}State University of New York at Stony Brook,

^{190}UPMC, Universite Paris Diderot,

^{191}University of Regina,

^{192}Chonnam National University,

^{193}University of British Columbia,

^{194}University of Warwick,

^{195}Boston University,

^{196}IRFU CEA Saclay,

^{197}State University of New York at Stony Brook,

^{198}INFN Sezione di Roma and Universit`a di Roma "La Sapienza",

^{199}INFN Sezione di Roma and Universit`a di Roma "La Sapienza",

^{200}Institut de Fisica d'Altes Energies,

^{201}IRFU CEA Saclay,

^{202}TRIUMF,

^{203}High Energy Accelerator Research Organization,

^{204}Imperial College London,

^{205}University of Rochester,

^{206}ETH Zurich,

^{207}University of Colorado at Boulder,

^{208}Universite de Lyon,

^{209}University of Toronto,

^{210}High Energy Accelerator Research Organization,

^{211}Lancaster University,

^{212}Warsaw University of Technology,

^{213}Imperial College London,

^{214}University of Regina,

^{215}Osaka City University, Department of Physics,

^{216}Kyoto University,

^{217}Institute for Nuclear Research of the Russian Academy of Sciences,

^{218}University of Liverpool,

^{219}IRFU CEA Saclay,

^{220}University of Liverpool,

^{221}University of Rochester,

^{222}State University of New York at Stony Brook,

^{223}University of Tokyo,

^{224}University of Bern,

^{225}Louisiana State University,

^{226}STFC Rutherford Appleton Laboratory,

^{227}INFN Sezione di Padova and Universit`a di Padova,

^{228}The Andrzej Soltan Institute for Nuclear Studies,

^{229}TRIUMF,

^{230}Kyoto University,

^{231}Institute for Nuclear Research of the Russian Academy of Sciences,

^{232}University of California,

^{233}University of Colorado at Boulder,

^{234}University of Tokyo,

^{235}University of Tokyo,

^{236}TRIUMF,

^{237}IFIC,

^{238}Ecole Polytechnique IN2P3-CNRS,

^{239}University of Warwick,

^{240}University of Tokyo,

^{241}STFC Daresbury Laboratory,

^{242}Kyoto University,

^{243}University of Liverpool,

^{244}University of Geneva,

^{245}University of Victoria,

^{246}High Energy Accelerator Research Organization,

^{247}University of Tokyo,

^{248}Osaka City University, Department of Physics,

^{249}Osaka City University, Department of Physics,

^{250}High Energy Accelerator Research Organization,

^{251}High Energy Accelerator Research Organization,

^{252}University of Tokyo,

^{253}Kyoto University,

^{254}University of Pittsburgh,

^{255}University of Sheffield,

^{256}State University of New York at Stony Brook,

^{257}STFC Rutherford Appleton Laboratory,

^{258}High Energy Accelerator Research Organization,

^{259}University of Tokyo,

^{260}Louisiana State University,

^{261}Imperial College London,

^{262}University of Tokyo,

^{263}High Energy Accelerator Research Organization,

^{264}High Energy Accelerator Research Organization,

^{265}High Energy Accelerator Research Organization,

^{266}University of Tokyo,

^{267}Osaka City University, Department of Physics,

^{268}University of British Columbia,

^{269}Kyoto University,

^{270}Queen Mary University of London,

^{271}High Energy Accelerator Research Organization,

^{272}Osaka City University, Department of Physics,

^{273}Dongshin University,

^{274}INFN Sezione di Napoli and Universita` di Napoli,

^{275}University of Pittsburgh,

^{276}State University of New York at Stony Brook,

^{277}University of Liverpool,

^{278}STFC Rutherford Appleton Laboratory,

^{279}University of Sheffield,

^{280}ETH Zurich,

^{281}8, deceased,

^{282}Queen Mary University of London,

^{283}UPMC, Universite Paris Diderot,

^{284}University of Warsaw,

^{285}TRIUMF,

^{286}TRIUMF,

^{287}The Andrzej Soltan Institute for Nuclear Studies,

^{288}STFC Rutherford Appleton Laboratory,

^{289}Boston University,

^{290}INFN Sezione di Bari and Universita` e Politecnico di Bari,

^{291}Lancaster University,

^{292}STFC Rutherford Appleton Laboratory,

^{293}University of Geneva,

^{294}Imperial College London,

^{295}TRIUMF,

^{296}UPMC, Universite Paris Diderot,

^{297}University of Rochester,

^{298}The Andrzej Soltan Institute for Nuclear Studies,

^{299}University of Victoria,

^{300}University of Bern,

^{301}RWTH Aachen University,

^{302}ETH Zurich,

^{303}Colorado State University,

^{304}University of British Columbia,

^{305}Queen Mary University of London,

^{306}High Energy Accelerator Research Organization,

^{307}Institut de Fisica d'Altes Energies,

^{308}IRFU CEA Saclay,

^{309}High Energy Accelerator Research Organization,

^{310}Duke University,

^{311}Colorado State University,

^{312}Imperial College London,

^{313}University of Warwick,

^{314}Osaka City University, Department of Physics,

^{315}High Energy Accelerator Research Organization,

^{316}University of Tokyo,

^{317}High Energy Accelerator Research Organization,

^{318}University of Tokyo,

^{319}University of Tokyo,

^{320}Imperial College London,

^{321}STFC Rutherford Appleton Laboratory,

^{322}Oxford University,

^{323}University of California,

^{324}Wroclaw University,

^{325}University of California,

^{326}IFIC,

^{327}RWTH Aachen University,

^{328}IFIC,

^{329}RWTH Aachen University,

^{330}Queen Mary University of London,

^{331}Boston University,

^{332}ETH Zurich,

^{333}Boston University,

^{334}The Andrzej Soltan Institute for Nuclear Studies,

^{335}University of Liverpool,

^{336}Kobe University,

^{337}Kyoto University,

^{338}High Energy Accelerator Research Organization,

^{339}High Energy Accelerator Research Organization,

^{340}High Energy Accelerator Research Organization,

^{341}High Energy Accelerator Research Organization,

^{342}University of Silesia,

^{343}The Andrzej Soltan Institute for Nuclear Studies,

^{344}University of Regina,

^{345}High Energy Accelerator Research Organization,

^{346}Kyoto University,

^{347}University of Tokyo,

^{348}University of Tokyo,

^{349}Kobe University,

^{350}High Energy Accelerator Research Organization,

^{351}University of British Columbia,

^{352}High Energy Accelerator Research Organization,

^{353}High Energy Accelerator Research Organization,

^{354}University of Tokyo,

^{355}Osaka City University, Department of Physics,

^{356}State University of New York at Stony Brook,

^{357}High Energy Accelerator Research Organization,

^{358}RWTH Aachen University,

^{359}Queen Mary University of London,

^{360}University of Sheffield,

^{361}University of Liverpool,

^{362}Colorado State University,

^{363}High Energy Accelerator Research Organization,

^{364}18, deceased,

^{365}University of Liverpool,

^{366}High Energy Accelerator Research Organization,

^{367}Louisiana State University,

^{368}Imperial College London,

^{369}University of Tokyo,

^{370}Imperial College London,

^{371}University of California,

^{372}IRFU CEA Saclay,

^{373}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{374}Imperial College London,

^{375}Oxford University,

^{376}Duke University,

^{377}Brookhaven National Laboratory,

^{378}University of Tokyo,

^{379}University of Sheffield,

^{380}University of Sheffield,

^{381}STFC Rutherford Appleton Laboratory,

^{382}Imperial College London,

^{383}Oxford University,

^{384}Duke University,

^{385}Oxford University,

^{386}University of Warwick,

^{387}University of Geneva,

^{388}University of Washington,

^{389}TRIUMF,

^{390}Queen Mary University of London,

^{391}Colorado State University,

^{392}Duke University,

^{393}University of Tokyo,

^{394}High Energy Accelerator Research Organization,

^{395}High Energy Accelerator Research Organization,

^{396}Osaka City University, Department of Physics,

^{397}High Energy Accelerator Research Organization,

^{398}High Energy Accelerator Research Organization,

^{399}State University of New York at Stony Brook,

^{400}Kobe University,

^{401}TRIUMF,

^{402}Institute for Nuclear Research of the Russian Academy of Sciences,

^{403}University of Tokyo,

^{404}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{405}University of British Columbia,

^{406}UPMC, Universite Paris Diderot,

^{407}Warsaw University of Technology,

^{408}Warsaw University of Technology,

^{409}University of Colorado at Boulder,

^{410}IRFU CEA Saclay,

^{411}Wroclaw University

**Category:**High Energy Physics - Experiment

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. Read More

**Authors:**T2K Collaboration, N. Abgrall

^{1}, H. Aihara

^{2}, Y. Ajima

^{3}, J. B. Albert

^{4}, D. Allan

^{5}, P. -A. Amaudruz

^{6}, C. Andreopoulos

^{7}, B. Andrieu

^{8}, M. D. Anerella

^{9}, C. Angelsen

^{10}, S. Aoki

^{11}, O. Araoka

^{12}, J. Argyriades

^{13}, A. Ariga

^{14}, T. Ariga

^{15}, S. Assylbekov

^{16}, J. P. A. M. de AndrÃ©

^{17}, D. Autiero

^{18}, A. Badertscher

^{19}, O. Ballester

^{20}, M. Barbi

^{21}, G. J. Barker

^{22}, P. Baron

^{23}, G. Barr

^{24}, L. Bartoszek

^{25}, M. Batkiewicz

^{26}, F. Bay

^{27}, S. Bentham

^{28}, V. Berardi

^{29}, B. E. Berger

^{30}, H. Berns

^{31}, I. Bertram

^{32}, M. Besnier

^{33}, J. Beucher

^{34}, D. Beznosko

^{35}, S. Bhadra

^{36}, P. Birney

^{37}, D. Bishop

^{38}, E. Blackmore

^{39}, F. d. M. Blaszczyk

^{40}, J. Blocki

^{41}, A. Blondel

^{42}, A. Bodek

^{43}, C. Bojechko

^{44}, J. Bouchez

^{45}, T. Boussuge

^{46}, S. B. Boyd

^{47}, M. Boyer

^{48}, N. Braam

^{49}, R. Bradford

^{50}, A. Bravar

^{51}, K. Briggs

^{52}, J. D. Brinson

^{53}, C. Bronner

^{54}, D. G. Brook-Roberge

^{55}, M. Bryant

^{56}, N. Buchanan

^{57}, H. Budd

^{58}, M. Cadabeschi

^{59}, R. G. Calland

^{60}, D. Calvet

^{61}, J. Caravaca RodrÃguez

^{62}, J. Carroll

^{63}, S. L. Cartwright

^{64}, A. Carver

^{65}, R. Castillo

^{66}, M. G. Catanesi

^{67}, C. Cavata

^{68}, A. Cazes

^{69}, A. Cervera

^{70}, J. P. Charrier

^{71}, C. Chavez

^{72}, S. Choi

^{73}, S. Chollet

^{74}, G. Christodoulou

^{75}, P. Colas

^{76}, J. Coleman

^{77}, W. Coleman

^{78}, G. Collazuol

^{79}, K. Connolly

^{80}, P. Cooke

^{81}, A. Curioni

^{82}, A. Dabrowska

^{83}, I. Danko

^{84}, R. Das

^{85}, G. S. Davies

^{86}, S. Davis

^{87}, M. Day

^{88}, X. De La Broise

^{89}, P. de Perio

^{90}, G. De Rosa

^{91}, T. Dealtry

^{92}, A. Debraine

^{93}, E. Delagnes

^{94}, A. Delbart

^{95}, C. Densham

^{96}, F. Di Lodovico

^{97}, S. Di Luise

^{98}, P. Dinh Tran

^{99}, J. Dobson

^{100}, J. Doornbos

^{101}, U. Dore

^{102}, O. Drapier

^{103}, F. Druillole

^{104}, F. Dufour

^{105}, J. Dumarchez

^{106}, T. Durkin

^{107}, S. Dytman

^{108}, M. Dziewiecki

^{109}, M. Dziomba

^{110}, B. Ellison

^{111}, S. Emery

^{112}, A. Ereditato

^{113}, J. E. Escallier

^{114}, L. Escudero

^{115}, L. S. Esposito

^{116}, W. Faszer

^{117}, M. Fechner

^{118}, A. Ferrero

^{119}, A. Finch

^{120}, C. Fisher

^{121}, M. Fitton

^{122}, R. Flight

^{123}, D. Forbush

^{124}, E. Frank

^{125}, K. Fransham

^{126}, Y. Fujii

^{127}, Y. Fukuda

^{128}, M. Gallop

^{129}, V. Galymov

^{130}, G. L. Ganetis

^{131}, F. C. Gannaway

^{132}, A. Gaudin

^{133}, J. Gaweda

^{134}, A. Gendotti

^{135}, M. George

^{136}, S. Giffin

^{137}, C. Giganti

^{138}, K. Gilje

^{139}, I. Giomataris

^{140}, J. Giraud

^{141}, A. K. Ghosh

^{142}, T. Golan

^{143}, M. Goldhaber

^{144}, J. J. Gomez-Cadenas

^{145}, S. Gomi

^{146}, M. Gonin

^{147}, M. Goyette

^{148}, A. Grant

^{149}, N. Grant

^{150}, F. GraÃ±ena

^{151}, S. Greenwood

^{152}, P. Gumplinger

^{153}, P. Guzowski

^{154}, M. D. Haigh

^{155}, K. Hamano

^{156}, C. Hansen

^{157}, T. Hara

^{158}, P. F. Harrison

^{159}, B. Hartfiel

^{160}, M. Hartz

^{161}, T. Haruyama

^{162}, R. Hasanen

^{163}, T. Hasegawa

^{164}, N. C. Hastings

^{165}, S. Hastings

^{166}, A. Hatzikoutelis

^{167}, K. Hayashi

^{168}, Y. Hayato

^{169}, T. D. J. Haycock

^{170}, C. Hearty

^{171}, R. L. Helmer

^{172}, R. Henderson

^{173}, S. Herlant

^{174}, N. Higashi

^{175}, J. Hignight

^{176}, K. Hiraide

^{177}, E. Hirose

^{178}, J. Holeczek

^{179}, N. Honkanen

^{180}, S. Horikawa

^{181}, A. Hyndman

^{182}, A. K. Ichikawa

^{183}, K. Ieki

^{184}, M. Ieva

^{185}, M. Iida

^{186}, M. Ikeda

^{187}, J. Ilic

^{188}, J. Imber

^{189}, T. Ishida

^{190}, C. Ishihara

^{191}, T. Ishii

^{192}, S. J. Ives

^{193}, M. Iwasaki

^{194}, K. Iyogi

^{195}, A. Izmaylov

^{196}, B. Jamieson

^{197}, R. A. Johnson

^{198}, K. K. Joo

^{199}, G. Jover-Manas

^{200}, C. K. Jung

^{201}, H. Kaji

^{202}, T. Kajita

^{203}, H. Kakuno

^{204}, J. Kameda

^{205}, K. Kaneyuki

^{206}, D. Karlen

^{207}, K. Kasami

^{208}, V. Kasey

^{209}, I. Kato

^{210}, H. Kawamuko

^{211}, E. Kearns

^{212}, L. Kellet

^{213}, M. Khabibullin

^{214}, M. Khaleeq

^{215}, N. Khan

^{216}, A. Khotjantsev

^{217}, D. Kielczewska

^{218}, T. Kikawa

^{219}, J. Y. Kim

^{220}, S. -B. Kim

^{221}, N. Kimura

^{222}, B. Kirby

^{223}, J. Kisiel

^{224}, P. Kitching

^{225}, T. Kobayashi

^{226}, G. Kogan

^{227}, S. Koike

^{228}, T. Komorowski

^{229}, A. Konaka

^{230}, L. L. Kormos

^{231}, A. Korzenev

^{232}, K. Koseki

^{233}, Y. Koshio

^{234}, Y. Kouzuma

^{235}, K. Kowalik

^{236}, V. Kravtsov

^{237}, I. Kreslo

^{238}, W. Kropp

^{239}, H. Kubo

^{240}, J. Kubota

^{241}, Y. Kudenko

^{242}, N. Kulkarni

^{243}, L. Kurchaninov

^{244}, Y. Kurimoto

^{245}, R. Kurjata

^{246}, Y. Kurosawa

^{247}, T. Kutter

^{248}, J. Lagoda

^{249}, K. Laihem

^{250}, R. Langstaff

^{251}, M. Laveder

^{252}, T. B. Lawson

^{253}, P. T. Le

^{254}, A. Le Coguie

^{255}, M. Le Ross

^{256}, K. P. Lee

^{257}, M. Lenckowski

^{258}, C. Licciardi

^{259}, I. T. Lim

^{260}, T. Lindner

^{261}, R. P. Litchfield

^{262}, A. Longhin

^{263}, G. D. Lopez

^{264}, P. Lu

^{265}, L. Ludovici

^{266}, T. Lux

^{267}, M. Macaire

^{268}, L. Magaletti

^{269}, K. Mahn

^{270}, Y. Makida

^{271}, C. J. Malafis

^{272}, M. Malek

^{273}, S. Manly

^{274}, A. Marchionni

^{275}, C. Mark

^{276}, A. D. Marino

^{277}, A. J. Marone

^{278}, J. Marteau

^{279}, J. F. Martin

^{280}, T. Maruyama

^{281}, T. Maryon

^{282}, J. Marzec

^{283}, P. Masliah

^{284}, E. L. Mathie

^{285}, C. Matsumura

^{286}, K. Matsuoka

^{287}, V. Matveev

^{288}, K. Mavrokoridis

^{289}, E. Mazzucato

^{290}, N. McCauley

^{291}, K. S. McFarland

^{292}, C. McGrew

^{293}, T. McLachlan

^{294}, I. Mercer

^{295}, M. Messina

^{296}, W. Metcalf

^{297}, C. Metelko

^{298}, M. Mezzetto

^{299}, P. Mijakowski

^{300}, C. A. Miller

^{301}, A. Minamino

^{302}, O. Mineev

^{303}, S. Mine

^{304}, R. E. Minvielle

^{305}, G. Mituka

^{306}, M. Miura

^{307}, K. Mizouchi

^{308}, J. -P. Mols

^{309}, L. Monfregola

^{310}, E. Monmarthe

^{311}, F. Moreau

^{312}, B. Morgan

^{313}, S. Moriyama

^{314}, D. Morris

^{315}, A. Muir

^{316}, A. Murakami

^{317}, J. F. Muratore

^{318}, M. Murdoch

^{319}, S. Murphy

^{320}, J. Myslik

^{321}, G. Nagashima

^{322}, T. Nakadaira

^{323}, M. Nakahata

^{324}, T. Nakamoto

^{325}, K. Nakamura

^{326}, S. Nakayama

^{327}, T. Nakaya

^{328}, D. Naples

^{329}, B. Nelson

^{330}, T. C. Nicholls

^{331}, K. Nishikawa

^{332}, H. Nishino

^{333}, K. Nitta

^{334}, F. Nizery

^{335}, J. A. Nowak

^{336}, M. Noy

^{337}, Y. Obayashi

^{338}, T. Ogitsu

^{339}, H. Ohhata

^{340}, T. Okamura

^{341}, K. Okumura

^{342}, T. Okusawa

^{343}, C. Ohlmann

^{344}, K. Olchanski

^{345}, R. Openshaw

^{346}, S. M. Oser

^{347}, M. Otani

^{348}, R. A. Owen

^{349}, Y. Oyama

^{350}, T. Ozaki

^{351}, M. Y. Pac

^{352}, V. Palladino

^{353}, V. Paolone

^{354}, P. Paul

^{355}, D. Payne

^{356}, G. F. Pearce

^{357}, C. Pearson

^{358}, J. D. Perkin

^{359}, M. Pfleger

^{360}, F. Pierre

^{361}, D. Pierrepont

^{362}, P. Plonski

^{363}, P. Poffenberger

^{364}, E. Poplawska

^{365}, B. Popov

^{366}, M. Posiadala

^{367}, J. -M. Poutissou

^{368}, R. Poutissou

^{369}, R. Preece

^{370}, P. Przewlocki

^{371}, W. Qian

^{372}, J. L. Raaf

^{373}, E. Radicioni

^{374}, K. Ramos

^{375}, P. Ratoff

^{376}, T. M. Raufer

^{377}, M. Ravonel

^{378}, M. Raymond

^{379}, F. Retiere

^{380}, D. Richards

^{381}, J. -L. Ritou

^{382}, A. Robert

^{383}, P. A. Rodrigues

^{384}, E. Rondio

^{385}, M. Roney

^{386}, M. Rooney

^{387}, D. Ross

^{388}, B. Rossi

^{389}, S. Roth

^{390}, A. Rubbia

^{391}, D. Ruterbories

^{392}, R. Sacco

^{393}, S. Sadler

^{394}, K. Sakashita

^{395}, F. Sanchez

^{396}, A. Sarrat

^{397}, K. Sasaki

^{398}, P. Schaack

^{399}, J. Schmidt

^{400}, K. Scholberg

^{401}, J. Schwehr

^{402}, M. Scott

^{403}, D. I. Scully

^{404}, Y. Seiya

^{405}, T. Sekiguchi

^{406}, H. Sekiya

^{407}, G. Sheffer

^{408}, M. Shibata

^{409}, Y. Shimizu

^{410}, M. Shiozawa

^{411}, S. Short

^{412}, M. Siyad

^{413}, D. Smith

^{414}, R. J. Smith

^{415}, M. Smy

^{416}, J. Sobczyk

^{417}, H. Sobel

^{418}, S. Sooriyakumaran

^{419}, M. Sorel

^{420}, J. Spitz

^{421}, A. Stahl

^{422}, P. Stamoulis

^{423}, O. Star

^{424}, J. Statter

^{425}, L. Stawnyczy

^{426}, J. Steinmann

^{427}, J. Steffens

^{428}, B. Still

^{429}, M. Stodulski

^{430}, J. Stone

^{431}, C. Strabel

^{432}, T. Strauss

^{433}, R. Sulej

^{434}, P. Sutcliffe

^{435}, A. Suzuki

^{436}, K. Suzuki

^{437}, S. Suzuki

^{438}, S. Y. Suzuki

^{439}, Y. Suzuki

^{440}, Y. Suzuki

^{441}, J. Swierblewski

^{442}, T. Szeglowski

^{443}, M. Szeptycka

^{444}, R. Tacik

^{445}, M. Tada

^{446}, A. S. Tadepalli

^{447}, M. Taguchi

^{448}, S. Takahashi

^{449}, A. Takeda

^{450}, Y. Takenaga

^{451}, Y. Takeuchi

^{452}, H. A. Tanaka

^{453}, K. Tanaka

^{454}, M. Tanaka

^{455}, M. M. Tanaka

^{456}, N. Tanimoto

^{457}, K. Tashiro

^{458}, I. J. Taylor

^{459}, A. Terashima

^{460}, D. Terhorst

^{461}, R. Terri

^{462}, L. F. Thompson

^{463}, A. Thorley

^{464}, M. Thorpe

^{465}, W. Toki

^{466}, T. Tomaru

^{467}, Y. Totsuka

^{468}, C. Touramanis

^{469}, T. Tsukamoto

^{470}, V. Tvaskis

^{471}, M. Tzanov

^{472}, Y. Uchida

^{473}, K. Ueno

^{474}, M. Usseglio

^{475}, A. Vacheret

^{476}, M. Vagins

^{477}, J. F. Van Schalkwyk

^{478}, J. -C. Vanel

^{479}, G. Vasseur

^{480}, O. Veledar

^{481}, P. Vincent

^{482}, T. Wachala

^{483}, A. V. Waldron

^{484}, C. W. Walter

^{485}, P. J. Wanderer

^{486}, M. A. Ward

^{487}, G. P. Ward

^{488}, D. Wark

^{489}, D. Warner

^{490}, M. O. Wascko

^{491}, A. Weber

^{492}, R. Wendell

^{493}, J. Wendland

^{494}, N. West

^{495}, L. H. Whitehead

^{496}, G. WikstrÃ¶m

^{497}, R. J. Wilkes

^{498}, M. J. Wilking

^{499}, Z. Williamson

^{500}, J. R. Wilson

^{501}, R. J. Wilson

^{502}, K. Wong

^{503}, T. Wongjirad

^{504}, S. Yamada

^{505}, Y. Yamada

^{506}, A. Yamamoto

^{507}, K. Yamamoto

^{508}, Y. Yamanoi

^{509}, H. Yamaoka

^{510}, C. Yanagisawa

^{511}, T. Yano

^{512}, S. Yen

^{513}, N. Yershov

^{514}, M. Yokoyama

^{515}, A. Zalewska

^{516}, J. Zalipska

^{517}, K. Zaremba

^{518}, M. Ziembicki

^{519}, E. D. Zimmerman

^{520}, M. Zito

^{521}, J. Zmuda

^{522}

**Affiliations:**

^{1}University of Geneva,

^{2}University of Tokyo,

^{3}High Energy Accelerator Research Organization,

^{4}Duke University,

^{5}STFC, Rutherford Appleton Laboratory,

^{6}TRIUMF,

^{7}STFC, Rutherford Appleton Laboratory,

^{8}UPMC, UniversitÃ© Paris Diderot,

^{9}Brookhaven National Laboratory,

^{10}STFC, Rutherford Appleton Laboratory,

^{11}Kobe University,

^{12}High Energy Accelerator Research Organization,

^{13}University of Geneva,

^{14}University of Bern,

^{15}University of Bern,

^{16}Colorado State University,

^{17}Ecole Polytechnique, IN2P3-CNRS,

^{18}UniversitÃ© de Lyon, UniversitÃ© Claude Bernard Lyon 1,

^{19}ETH Zurich,

^{20}Institut de Fisica d'Altes Energies,

^{21}University of Regina,

^{22}University of Warwick,

^{23}IRFU, CEA Saclay,

^{24}Oxford University,

^{25}University of Colorado at Boulder,

^{26}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{27}University of Bern,

^{28}Lancaster University,

^{29}INFN Sezione di Bari and UniversitÃ e Politecnico di Bari,

^{30}Colorado State University,

^{31}University of Washington,

^{32}Lancaster University,

^{33}Ecole Polytechnique, IN2P3-CNRS,

^{34}IRFU, CEA Saclay,

^{35}State University of New York at Stony Brook,

^{36}York University,

^{37}University of Victoria,

^{38}TRIUMF,

^{39}TRIUMF,

^{40}IRFU, CEA Saclay,

^{41}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{42}University of Geneva,

^{43}University of Rochester,

^{44}University of Victoria,

^{45}8, deceased,

^{46}IRFU, CEA Saclay,

^{47}University of Warwick,

^{48}IRFU, CEA Saclay,

^{49}University of Victoria,

^{50}University of Rochester,

^{51}University of Geneva,

^{52}University of Warwick,

^{53}Louisiana State University,

^{54}Ecole Polytechnique, IN2P3-CNRS,

^{55}University of British Columbia,

^{56}University of British Columbia,

^{57}Colorado State University,

^{58}University of Rochester,

^{59}University of Toronto,

^{60}University of Liverpool,

^{61}IRFU, CEA Saclay,

^{62}Institut de Fisica d'Altes Energies,

^{63}University of Liverpool,

^{64}University of Sheffield,

^{65}University of Warwick,

^{66}Institut de Fisica d'Altes Energies,

^{67}INFN Sezione di Bari and UniversitÃ e Politecnico di Bari,

^{68}IRFU, CEA Saclay,

^{69}UniversitÃ© de Lyon, UniversitÃ© Claude Bernard Lyon 1,

^{70}IFIC,

^{71}IRFU, CEA Saclay,

^{72}University of Liverpool,

^{73}Seoul National University,

^{74}Ecole Polytechnique, IN2P3-CNRS,

^{75}University of Liverpool,

^{76}IRFU, CEA Saclay,

^{77}University of Liverpool,

^{78}Louisiana State University,

^{79}INFN Sezione di Padova and UniversitÃ di Padova,

^{80}University of Washington,

^{81}University of Liverpool,

^{82}ETH Zurich,

^{83}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{84}University of Pittsburgh,

^{85}Colorado State University,

^{86}Lancaster University,

^{87}University of Washington,

^{88}University of Rochester,

^{89}IRFU, CEA Saclay,

^{90}University of Toronto,

^{91}INFN Sezione di Napoli and UniversitÃ di Napoli,

^{92}Oxford University,

^{93}Ecole Polytechnique, IN2P3-CNRS,

^{94}IRFU, CEA Saclay,

^{95}IRFU, CEA Saclay,

^{96}STFC, Rutherford Appleton Laboratory,

^{97}Queen Mary University of London,

^{98}ETH Zurich,

^{99}Ecole Polytechnique, IN2P3-CNRS,

^{100}Imperial College London,

^{101}TRIUMF,

^{102}INFN Sezione di Roma and UniversitÃ di Roma "La Sapienza'',

^{103}Ecole Polytechnique, IN2P3-CNRS,

^{104}IRFU, CEA Saclay,

^{105}University of Geneva,

^{106}UPMC, UniversitÃ© Paris Diderot,

^{107}STFC, Rutherford Appleton Laboratory,

^{108}University of Pittsburgh,

^{109}Warsaw University of Technology,

^{110}University of Washington,

^{111}Louisiana State University,

^{112}IRFU, CEA Saclay,

^{113}University of Bern,

^{114}Brookhaven National Laboratory,

^{115}IFIC,

^{116}ETH Zurich,

^{117}TRIUMF,

^{118}Duke University,

^{119}University of Geneva,

^{120}Lancaster University,

^{121}TRIUMF,

^{122}STFC, Rutherford Appleton Laboratory,

^{123}University of Rochester,

^{124}University of Washington,

^{125}University of Bern,

^{126}University of Victoria,

^{127}High Energy Accelerator Research Organization,

^{128}Miyagi University of Education,

^{129}TRIUMF,

^{130}York University,

^{131}Brookhaven National Laboratory,

^{132}Queen Mary University of London,

^{133}University of Victoria,

^{134}Institut de Fisica d'Altes Energies,

^{135}ETH Zurich,

^{136}Queen Mary University of London,

^{137}University of Regina,

^{138}Institut de Fisica d'Altes Energies,

^{139}State University of New York at Stony Brook,

^{140}IRFU, CEA Saclay,

^{141}IRFU, CEA Saclay,

^{142}Brookhaven National Laboratory,

^{143}Wroclaw University,

^{144}55, deceased,

^{145}IFIC,

^{146}Kyoto University,

^{147}Ecole Polytechnique, IN2P3-CNRS,

^{148}TRIUMF,

^{149}STFC, Daresbury Laboratory,

^{150}STFC, Rutherford Appleton Laboratory,

^{151}Institut de Fisica d'Altes Energies,

^{152}Imperial College London,

^{153}TRIUMF,

^{154}Imperial College London,

^{155}Oxford University,

^{156}TRIUMF,

^{157}IFIC,

^{158}Kobe University,

^{159}University of Warwick,

^{160}Louisiana State University,

^{161}York University,

^{162}High Energy Accelerator Research Organization,

^{163}University of Victoria,

^{164}High Energy Accelerator Research Organization,

^{165}University of Regina,

^{166}University of British Columbia,

^{167}Lancaster University,

^{168}High Energy Accelerator Research Organization,

^{169}University of Tokyo,

^{170}University of Sheffield,

^{171}University of British Columbia,

^{172}TRIUMF,

^{173}TRIUMF,

^{174}IRFU, CEA Saclay,

^{175}High Energy Accelerator Research Organization,

^{176}State University of New York at Stony Brook,

^{177}Kyoto University,

^{178}High Energy Accelerator Research Organization,

^{179}University of Silesia,

^{180}University of Victoria,

^{181}ETH Zurich,

^{182}Queen Mary University of London,

^{183}Kyoto University,

^{184}Kyoto University,

^{185}Institut de Fisica d'Altes Energies,

^{186}High Energy Accelerator Research Organization,

^{187}Kyoto University,

^{188}STFC, Rutherford Appleton Laboratory,

^{189}State University of New York at Stony Brook,

^{190}High Energy Accelerator Research Organization,

^{191}University of Tokyo,

^{192}High Energy Accelerator Research Organization,

^{193}Imperial College London,

^{194}University of Tokyo,

^{195}University of Tokyo,

^{196}Institute for Nuclear Research of the Russian Academy of Sciences,

^{197}University of British Columbia,

^{198}University of Colorado at Boulder,

^{199}Chonnam National University,

^{200}Institut de Fisica d'Altes Energies,

^{201}State University of New York at Stony Brook,

^{202}University of Tokyo,

^{203}University of Tokyo,

^{204}University of Tokyo,

^{205}University of Tokyo,

^{206}26, deceased,

^{207}University of Victoria,

^{208}High Energy Accelerator Research Organization,

^{209}Imperial College London,

^{210}TRIUMF,

^{211}Kyoto University,

^{212}Boston University,

^{213}University of Liverpool,

^{214}Institute for Nuclear Research of the Russian Academy of Sciences,

^{215}Imperial College London,

^{216}TRIUMF,

^{217}Institute for Nuclear Research of the Russian Academy of Sciences,

^{218}University of Warsaw,

^{219}Kyoto University,

^{220}Chonnam National University,

^{221}Seoul National University,

^{222}High Energy Accelerator Research Organization,

^{223}University of British Columbia,

^{224}University of Silesia,

^{225}University of Alberta,

^{226}High Energy Accelerator Research Organization,

^{227}Imperial College London,

^{228}High Energy Accelerator Research Organization,

^{229}Lancaster University,

^{230}TRIUMF,

^{231}Lancaster University,

^{232}University of Geneva,

^{233}High Energy Accelerator Research Organization,

^{234}University of Tokyo,

^{235}University of Tokyo,

^{236}The Andrzej Soltan Institute for Nuclear Studies,

^{237}Colorado State University,

^{238}University of Bern,

^{239}University of California, Irvine,

^{240}Kyoto University,

^{241}Kyoto University,

^{242}Institute for Nuclear Research of the Russian Academy of Sciences,

^{243}Louisiana State University,

^{244}TRIUMF,

^{245}Kyoto University,

^{246}Warsaw University of Technology,

^{247}Kyoto University,

^{248}Louisiana State University,

^{249}The Andrzej Soltan Institute for Nuclear Studies,

^{250}RWTH Aachen University,

^{251}University of Victoria,

^{252}INFN Sezione di Padova and UniversitÃ di Padova,

^{253}University of Sheffield,

^{254}State University of New York at Stony Brook,

^{255}IRFU, CEA Saclay,

^{256}TRIUMF,

^{257}University of Tokyo,

^{258}University of Victoria,

^{259}University of Regina,

^{260}Chonnam National University,

^{261}University of British Columbia,

^{262}University of Warwick,

^{263}IRFU, CEA Saclay,

^{264}State University of New York at Stony Brook,

^{265}University of British Columbia,

^{266}INFN Sezione di Roma and UniversitÃ di Roma "La Sapienza'',

^{267}Institut de Fisica d'Altes Energies,

^{268}IRFU, CEA Saclay,

^{269}INFN Sezione di Bari and UniversitÃ e Politecnico di Bari,

^{270}TRIUMF,

^{271}High Energy Accelerator Research Organization,

^{272}State University of New York at Stony Brook,

^{273}Imperial College London,

^{274}University of Rochester,

^{275}ETH Zurich,

^{276}TRIUMF,

^{277}University of Colorado at Boulder,

^{278}Brookhaven National Laboratory,

^{279}UniversitÃ© de Lyon, UniversitÃ© Claude Bernard Lyon 1,

^{280}University of Toronto,

^{281}High Energy Accelerator Research Organization,

^{282}Lancaster University,

^{283}Warsaw University of Technology,

^{284}Imperial College London,

^{285}University of Regina,

^{286}Osaka City University,

^{287}Kyoto University,

^{288}Institute for Nuclear Research of the Russian Academy of Sciences,

^{289}University of Liverpool,

^{290}IRFU, CEA Saclay,

^{291}University of Liverpool,

^{292}University of Rochester,

^{293}State University of New York at Stony Brook,

^{294}University of Tokyo,

^{295}Lancaster University,

^{296}University of Bern,

^{297}Louisiana State University,

^{298}STFC, Rutherford Appleton Laboratory,

^{299}INFN Sezione di Padova and UniversitÃ di Padova,

^{300}The Andrzej Soltan Institute for Nuclear Studies,

^{301}TRIUMF,

^{302}Kyoto University,

^{303}Institute for Nuclear Research of the Russian Academy of Sciences,

^{304}University of California, Irvine,

^{305}Louisiana State University,

^{306}University of Tokyo,

^{307}University of Tokyo,

^{308}TRIUMF,

^{309}IRFU, CEA Saclay,

^{310}IFIC,

^{311}IRFU, CEA Saclay,

^{312}Ecole Polytechnique, IN2P3-CNRS,

^{313}University of Warwick,

^{314}University of Tokyo,

^{315}TRIUMF,

^{316}STFC, Daresbury Laboratory,

^{317}Kyoto University,

^{318}Brookhaven National Laboratory,

^{319}University of Liverpool,

^{320}University of Geneva,

^{321}University of Victoria,

^{322}State University of New York at Stony Brook,

^{323}High Energy Accelerator Research Organization,

^{324}University of Tokyo,

^{325}High Energy Accelerator Research Organization,

^{326}High Energy Accelerator Research Organization,

^{327}University of Tokyo,

^{328}Kyoto University,

^{329}University of Pittsburgh,

^{330}State University of New York at Stony Brook,

^{331}STFC, Rutherford Appleton Laboratory,

^{332}High Energy Accelerator Research Organization,

^{333}University of Tokyo,

^{334}Kyoto University,

^{335}IRFU, CEA Saclay,

^{336}Louisiana State University,

^{337}Imperial College London,

^{338}University of Tokyo,

^{339}High Energy Accelerator Research Organization,

^{340}High Energy Accelerator Research Organization,

^{341}High Energy Accelerator Research Organization,

^{342}University of Tokyo,

^{343}Osaka City University,

^{344}TRIUMF,

^{345}TRIUMF,

^{346}TRIUMF,

^{347}University of British Columbia,

^{348}Kyoto University,

^{349}Queen Mary University of London,

^{350}High Energy Accelerator Research Organization,

^{351}Osaka City University,

^{352}Dongshin University,

^{353}INFN Sezione di Napoli and UniversitÃ di Napoli,

^{354}University of Pittsburgh,

^{355}State University of New York at Stony Brook,

^{356}University of Liverpool,

^{357}STFC, Rutherford Appleton Laboratory,

^{358}TRIUMF,

^{359}University of Sheffield,

^{360}University of Victoria,

^{361}8, deceased,

^{362}IRFU, CEA Saclay,

^{363}Warsaw University of Technology,

^{364}University of Victoria,

^{365}Queen Mary University of London,

^{366}UPMC, UniversitÃ© Paris Diderot,

^{367}University of Warsaw,

^{368}TRIUMF,

^{369}TRIUMF,

^{370}STFC, Rutherford Appleton Laboratory,

^{371}The Andrzej Soltan Institute for Nuclear Studies,

^{372}STFC, Rutherford Appleton Laboratory,

^{373}Boston University,

^{374}INFN Sezione di Bari and UniversitÃ e Politecnico di Bari,

^{375}State University of New York at Stony Brook,

^{376}Lancaster University,

^{377}STFC, Rutherford Appleton Laboratory,

^{378}University of Geneva,

^{379}Imperial College London,

^{380}TRIUMF,

^{381}University of Warwick,

^{382}IRFU, CEA Saclay,

^{383}UPMC, UniversitÃ© Paris Diderot,

^{384}University of Rochester,

^{385}The Andrzej Soltan Institute for Nuclear Studies,

^{386}University of Victoria,

^{387}STFC, Rutherford Appleton Laboratory,

^{388}TRIUMF,

^{389}University of Bern,

^{390}RWTH Aachen University,

^{391}ETH Zurich,

^{392}Colorado State University,

^{393}Queen Mary University of London,

^{394}University of Sheffield,

^{395}High Energy Accelerator Research Organization,

^{396}Institut de Fisica d'Altes Energies,

^{397}IRFU, CEA Saclay,

^{398}High Energy Accelerator Research Organization,

^{399}Imperial College London,

^{400}State University of New York at Stony Brook,

^{401}Duke University,

^{402}Colorado State University,

^{403}Imperial College London,

^{404}University of Warwick,

^{405}Osaka City University,

^{406}High Energy Accelerator Research Organization,

^{407}University of Tokyo,

^{408}TRIUMF,

^{409}High Energy Accelerator Research Organization,

^{410}University of Tokyo,

^{411}University of Tokyo,

^{412}Imperial College London,

^{413}STFC, Rutherford Appleton Laboratory,

^{414}Louisiana State University,

^{415}Oxford University,

^{416}University of California, Irvine,

^{417}Wroclaw University,

^{418}University of California, Irvine,

^{419}TRIUMF,

^{420}IFIC,

^{421}University of Colorado at Boulder,

^{422}RWTH Aachen University,

^{423}IFIC,

^{424}TRIUMF,

^{425}Lancaster University,

^{426}York University,

^{427}RWTH Aachen University,

^{428}State University of New York at Stony Brook,

^{429}Queen Mary University of London,

^{430}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{431}Boston University,

^{432}ETH Zurich,

^{433}ETH Zurich,

^{434}The Andrzej Soltan Institute for Nuclear Studies,

^{435}University of Liverpool,

^{436}Kobe University,

^{437}Kyoto University,

^{438}High Energy Accelerator Research Organization,

^{439}High Energy Accelerator Research Organization,

^{440}High Energy Accelerator Research Organization,

^{441}High Energy Accelerator Research Organization,

^{442}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{443}University of Silesia,

^{444}The Andrzej Soltan Institute for Nuclear Studies,

^{445}University of Regina,

^{446}High Energy Accelerator Research Organization,

^{447}State University of New York at Stony Brook,

^{448}Kyoto University,

^{449}Kyoto University,

^{450}University of Tokyo,

^{451}University of Tokyo,

^{452}Kobe University,

^{453}University of British Columbia,

^{454}High Energy Accelerator Research Organization,

^{455}High Energy Accelerator Research Organization,

^{456}High Energy Accelerator Research Organization,

^{457}University of Tokyo,

^{458}Osaka City University,

^{459}State University of New York at Stony Brook,

^{460}High Energy Accelerator Research Organization,

^{461}RWTH Aachen University,

^{462}Queen Mary University of London,

^{463}University of Sheffield,

^{464}University of Liverpool,

^{465}STFC, Rutherford Appleton Laboratory,

^{466}Colorado State University,

^{467}High Energy Accelerator Research Organization,

^{468}21, deceased,

^{469}University of Liverpool,

^{470}High Energy Accelerator Research Organization,

^{471}University of Victoria,

^{472}Louisiana State University,

^{473}Imperial College London,

^{474}University of Tokyo,

^{475}IRFU, CEA Saclay,

^{476}Imperial College London,

^{477}University of California, Irvine,

^{478}Imperial College London,

^{479}Ecole Polytechnique, IN2P3-CNRS,

^{480}IRFU, CEA Saclay,

^{481}University of Sheffield,

^{482}TRIUMF,

^{483}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{484}Oxford University,

^{485}Duke University,

^{486}Brookhaven National Laboratory,

^{487}University of Sheffield,

^{488}University of Sheffield,

^{489}STFC, Rutherford Appleton Laboratory,

^{490}Colorado State University,

^{491}Imperial College London,

^{492}Oxford University,

^{493}Duke University,

^{494}University of British Columbia,

^{495}Oxford University,

^{496}University of Warwick,

^{497}University of Geneva,

^{498}University of Washington,

^{499}TRIUMF,

^{500}Oxford University,

^{501}Queen Mary University of London,

^{502}Colorado State University,

^{503}TRIUMF,

^{504}Duke University,

^{505}University of Tokyo,

^{506}High Energy Accelerator Research Organization,

^{507}High Energy Accelerator Research Organization,

^{508}Osaka City University,

^{509}High Energy Accelerator Research Organization,

^{510}High Energy Accelerator Research Organization,

^{511}State University of New York at Stony Brook,

^{512}Kobe University,

^{513}TRIUMF,

^{514}Institute for Nuclear Research of the Russian Academy of Sciences,

^{515}University of Tokyo,

^{516}H. Niewodniczanski Institute of Nuclear Physics PAN,

^{517}University of British Columbia,

^{518}Warsaw University of Technology,

^{519}Warsaw University of Technology,

^{520}University of Colorado at Boulder,

^{521}IRFU, CEA Saclay,

^{522}Wroclaw University

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Read More

We consider associated production of squarks and gluinos with the lightest supersymmetric particle (LSP), or states nearly degenerate in mass with it. Though sub-dominant to pair production of color SU(3)-charged superpartners, these processes are directly sensitive to the wavefunction composition of the lightest neutralinos. Exploiting event-shape variables -- including some introduced here for the first time -- we are able to identify the composition of the LSP by selecting events involving a single high-pT jet recoiling against missing transverse energy. Read More

We present a focused study of a predictive unified model whose measurable consequences are immediately relevant to early discovery prospects of supersymmetry at the LHC. ATLAS and CMS have released their analysis with 35~pb$^{-1}$ of data and the model class we discuss is consistent with this data. It is shown that with an increase in luminosity the LSP dark matter mass and the gluino mass can be inferred from simple observables such as kinematic edges in leptonic channels and peak values in effective mass distributions. Read More

With the aim of uncovering viable regions of parameter space in deflected mirage mediation (DMM) models of supersymmetry breaking, we study the landscape of particle mass hierarchies for the lightest four non-Standard Model states for DMM models and compare the results to that of minimal supergravity/constrained MSSM (mSUGRA/CMSSM) models, building on previous studies of Feldman, Liu, and Nath. Deflected mirage mediation is a string-motivated scenario in which the soft terms include comparable contributions from gravity mediation, gauge mediation, and anomaly mediation. DMM allows a wide variety of phenomenologically preferred models with light charginos and neutralinos, including novel patterns in which the heavy Higgs particles are lighter than the lightest superpartner. Read More

**Authors:**A. Shporer, J. N. Winn, S. Dreizler, K. D. Colon, W. M. Wood-Vasey, P. I. Choi, C. Morley, C. Moutou, W. F. Welsh, D. Pollaco, D. Starkey, E. Adams, S. C. C. Barros, F. Bouchy, A. Cabrera-Lavers, S. Cerutti, L. Coban, K. Costello, H. Deeg, R. F. Diaz, G. A. Esquerdo, J. Fernandez, S. W. Fleming, E. B. Ford, B. J. Fulton, M. Good, G. Hebrard, M. J. Holman, M. Hunt, S. Kadakia, G. Lander, M. Lockhart, T. Mazeh, R. C. Morehead, B. E. Nelson, L. Nortmann, F. Reyes, E. Roebuck, A. R. Rudy, R. Ruth, E. Simpson, C. Vincent, G. Weaver, J. -W. Xie

**Category:**Earth and Planetary Astrophysics

We present ground-based optical observations of the September 2009 and January 2010 transits of HD 80606b. Based on 3 partial light curves of the September 2009 event, we derive a midtransit time of T_c [HJD] = 2455099.196 +- 0. Read More

We carry out an analysis of the potential of the Large Hadron Collider (LHC) to discover supersymmetry in runs at $\sqrt s=7$ TeV with an accumulated luminosity of (0.1--2) fb$^{-1}$ of data. The analysis is done both with minimal supergravity (mSUGRA) and supergravity (SUGRA) models with non-universal soft breaking. Read More

**Authors:**Frank Masci

^{1}, Roc Cutri

^{2}, Paul Francis

^{3}, Brant Nelson

^{4}, John Huchra

^{5}, D. Heath Jones

^{6}, Matthew Colless

^{7}, Will Saunders

^{8}

**Affiliations:**

^{1}IPAC/Caltech,

^{2}IPAC/Caltech,

^{3}Australian National University,

^{4}IPAC/Caltech,

^{5}Harvard-Smithsonian Center for Astrophysics,

^{6}Anglo-Australian Observatory,

^{7}Anglo-Australian Observatory,

^{8}Anglo-Australian Observatory

The Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red AGN and QSOs. We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the 6dF multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. Read More

Classifiers are often used to detect miscreant activities. We study how an adversary can systematically query a classifier to elicit information that allows the adversary to evade detection while incurring a near-minimal cost of modifying their intended malfeasance. We generalize the theory of Lowd and Meek (2005) to the family of convex-inducing classifiers that partition input space into two sets one of which is convex. Read More

Classifiers are often used to detect miscreant activities. We study how an adversary can efficiently query a classifier to elicit information that allows the adversary to evade detection at near-minimal cost. We generalize results of Lowd and Meek (2005) to convex-inducing classifiers. Read More

Motivated by specific connections to dark matter signatures, we study the prospects of observing the presence of a relatively light gluino whose mass is in the range ~(500-900) GeV with a wino-like lightest supersymmetric particle with mass in the range of ~(170-210) GeV. The light gaugino spectra studied here is generally different from other models, and in particular those with a wino dominated LSP, in that here the gluinos can be significantly lighter. The positron excess reported by the PAMELA satellite data is accounted for by annihilations of the wino LSP and their relic abundance can generally be brought near the WMAP constraints due to the late decay of a modulus field re-populating the density of relic dark matter. Read More

We compare the collider phenomenology of mirage mediation and deflected mirage mediation, which are two recently proposed "mixed" supersymmetry breaking scenarios motivated from string compactifications. The scenarios differ in that deflected mirage mediation includes contributions from gauge mediation in addition to the contributions from gravity mediation and anomaly mediation also present in mirage mediation. The threshold effects from gauge mediation can drastically alter the low energy spectrum from that of pure mirage mediation models, resulting in some cases in a squeezed gaugino spectrum and a gluino that is much lighter than other colored superpartners. Read More

**Authors:**P. Nath, B. D. Nelson, H. Davoudiasl, B. Dutta, D. Feldman, Z. Liu, T. Han, P. Langacker, R. Mohapatra, J. Valle, A. Pilaftsis, D. Zerwas, S. AbdusSalam, C. Adam-Bourdarios, J. A. Aguilar-Saavedra, B. Allanach, B. Altunkaynak, L. A. Anchordoqui, H. Baer, B. Bajc, O. Buchmueller, M. Carena, R. Cavanaugh, S. Chang, K. Choi, C. Csaki, S. Dawson, F. de Campos, A. De Roeck, M. Duhrssen, O. J. P. Eboli, J. R. Ellis, H. Flacher, H. Goldberg, W. Grimus, U. Haisch, S. Heinemeyer, M. Hirsch, M. Holmes, T. Ibrahim, G. Isidori, G. Kane, K. Kong, R. Lafaye, G. Landsberg, L. Lavoura, J. S. Lee, S. J. Lee, M. Lisanti, D. Lust, M. B. Magro, R. Mahbubani, M. Malinsky, F. Maltoni, S. Morisi, M. M. Muhlleitner, B. Mukhopadhyaya, M. Neubert, K. A. Olive, G. Perez, P. Fileviez Perez, T. Plehn, E. Ponton, W. Porod, F. Quevedo, M. Rauch, D. Restrepo, T. G. Rizzo, J. C. Romao, F. J. Ronga, J. Santiago, J. Schechter, G. Senjanovic, J. Shao, M. Spira, S. Stieberger, Z. Sullivan, T. M. P. Tait, X. Tata, T. R. Taylor, M. Toharia, J. Wacker, C. E. M. Wagner, L. -T. Wang, G. Weiglein, D. Zeppenfeld, K. Zurek

**Category:**High Energy Physics - Phenomenology

The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Read More

**Affiliations:**

^{1}Northeastern University,

^{2}Northeastern University

**Category:**High Energy Physics - Phenomenology

We consider the possibility that the recently reported events at the CDMS-II direct dark matter detection experiment are the result of coherent scattering of supersymmetric neutralinos. In such a scenario we argue that non-universal soft supersymmetry breaking gaugino masses are favored with a resulting lightest neutralino with significant Higgsino and wino components. We discuss the accompanying signals which must be seen at liquid-xenon direct detection experiments and indirect detection experiments if such a supersymmetric interpretation is to be maintained. Read More

**Affiliations:**

^{1}Northeastern University

**Category:**High Energy Physics - Phenomenology

We report on the first step of a systematic study of how gaugino mass unification can be probed at the LHC in a quasi-model independent manner. Here we focus our attention on the theoretically well-motivated mirage pattern of gaugino masses, a one-parameter family of models of which universal (high scale) gaugino masses are a limiting case. Using a statistical method to optimize our signature selection we arrive at three ensembles of observables targeted at the physics of the gaugino sector, allowing for a determination of this non-universality parameter without reconstructing individual mass eigenvalues or the soft supersymmetry-breaking gaugino masses themselves. Read More