B. D. Nelson - University of Tuebingen

B. D. Nelson
Are you B. D. Nelson?

Claim your profile, edit publications, add additional information:

Contact Details

Name
B. D. Nelson
Affiliation
University of Tuebingen
City
Tübingen
Country
Germany

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (20)
 
Mathematics - Operator Algebras (9)
 
High Energy Physics - Theory (9)
 
Earth and Planetary Astrophysics (7)
 
Computer Science - Learning (5)
 
High Energy Physics - Experiment (4)
 
Computer Science - Cryptography and Security (4)
 
Mathematics - Algebraic Geometry (4)
 
Statistics - Machine Learning (2)
 
Physics - Instrumentation and Detectors (2)
 
Mathematics - Functional Analysis (2)
 
Mathematics - Probability (2)
 
Cosmology and Nongalactic Astrophysics (2)
 
Quantitative Biology - Biomolecules (1)
 
High Energy Astrophysical Phenomena (1)
 
Astrophysics of Galaxies (1)
 
Computer Science - Computer Science and Game Theory (1)
 
Solar and Stellar Astrophysics (1)
 
Instrumentation and Methods for Astrophysics (1)
 
Mathematics - Numerical Analysis (1)
 
Physics - Plasma Physics (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)
 
Computer Science - Mathematical Software (1)
 
Physics - Computational Physics (1)

Publications Authored By B. D. Nelson

In this article, we study a form of free transport for the interpolated free group factors, extending the work of Guionnet and Shlyakhtenko for the usual free group factors. Our model for the interpolated free group factors comes from a canonical finite von Neumann algebra $\mathcal{M}(\Gamma, \mu)$ associated to a finite, connected, weighted graph $(\Gamma,V,E, \mu)$. With this model, we use an operator-valued version of Voiculescu's free difference quotient to state a Schwinger-Dyson equation which is valid for the generators of $\mathcal{M}(\Gamma, \mu)$. Read More

We demonstrate the application of the Dynamic Mode Decomposition (DMD) for the diagnostic analysis of the nonlinear dynamics of a magnetized plasma in resistive magnetohydrodynamics. The DMD method is an ideal spatio-temporal matrix decomposition that correlates spatial features of computational or experimental data while simultaneously associating the spatial activity with periodic temporal behavior. DMD can produce low-rank, reduced order surrogate models that can be used to reconstruct the state of the system and produce high-fidelity future state predictions. Read More

We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and $\Delta N_{\text{eff}}$ bounds. Read More

We report 1212 radial-velocity (RV) measurements obtained in the years 2009-2013 using an iodine cell for the spectroscopic binary nu Octantis (K1III/IV). This system (a_bin~2.6 au, P~1050 days) is conjectured to have a Jovian planet with a semi-major axis half that of the binary host. Read More

We introduce a free version of the Stein kernel, relative to a semicircular law. We use it to obtain a free counterpart of the HSI inequality of Ledoux, Peccatti and Nourdin, which is an improvement of the free logarithmic Sobolev inequality of Biane and Speicher, as well as a rate of convergence in the (multivariate) entropic free Central Limit Theorem. We also compute the free Stein kernels for several relevant families of self-adjoint operators. Read More

We argue, based on typical properties of known solutions of string/$M$-theory, that the lightest supersymmetric particle of the visible sector will not be stable. In other words, dark matter is {\em not} a particle with Standard Model quantum numbers, such as a WIMP. The argument is simple and based on the typical occurrence of a) hidden sectors, b) interactions between the Standard Model (visible) sector and these hidden sectors, and c) the lack of an argument against massive neutral hidden sector particles being lighter than the lightest visible supersymmetric particle. Read More

Suppose $M$ is a von Neumann algebra equipped with a faithful normal state $\varphi$ and generated by a finite set $G=G^*$, $|G|\geq 2$. We show that if $G$ consists of eigenvectors of the modular operator $\Delta_\varphi$ with finite free Fisher information, then the centralizer $M^\varphi$ is a $\mathrm{II}_1$ factor and $M$ is either a type $\mathrm{II}_1$ factor or a type $\mathrm{III}_\lambda$ factor, $0<\lambda\leq 1$, depending on the eigenvalues of $G$. Furthermore, $(M^\varphi)'\cap M=\mathbb{C}$, $M^\varphi$ does not have property $\Gamma$, and $M$ is full provided it is type $\mathrm{III}_\lambda$, $0<\lambda<1$. Read More

We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields. We find that the traditional R-parity assignments of the MSSM more readily accommodate the neutrino see-saw mechanism with non-trivial geometry than those superpotentials that violate R-parity. Read More

We extend the free monotone transport theorem of Guionnet and Shlyakhtenko to the case of infinite variables. As a first application, we provide a criterion for when mixed $q$-Gaussian algebras are isomorphic to $L(\mathbb{F}_\infty)$; namely, when the structure array $Q$ of a mixed $q$-Gaussian algebra has uniformly small entries that decay sufficiently rapidly. Here a mixed $q$-Gaussian algebra with structure array $Q=(q_{ij})_{i,j\in\mathbb{N}}$ is the von Neumann algebra generated by $X_n^Q=l_n+l_n^*, n\in\mathbb{N}$ and $(l_n)$ are the Fock space representations of the commutation relation $l_i^*l_j-q_{ij}l_jl_i^*=\delta_{i=j}, i,j\in\mathbb{N}$, $-1Read More

We complete the study of a class of string-motivated effective supergravity theories in which modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected mirage mediation (DMM), where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection experiments. Read More

Light stops consistent with the Higgs boson mass of $\sim126\,{\rm GeV}$ are investigated within the framework of minimal supergravity. It is shown that models with light stops which are also consistent with the thermal relic density constraints require stop coannihilation with the neutralino LSP. The analysis shows that the residual set of parameter points with light stops satisfying both the Higgs mass and the relic density constraints lie within a series of thin strips in the $m_0-m_{1/2}$ plane for different values of $A_0/m_0$. Read More

We consider the mixed $q$-Gaussian algebras introduced by Speicher which are generated by the variables $X_i=l_i+l_i^*,i=1,\ldots,N$, where $l_i^* l_j-q_{ij}l_j l_i^*=\delta_{i,j}$ and $-1Read More

We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demanding long-term orbital stability. Our dataset incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, HARPS, and Keck HIRES as well as previously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. Read More

We perform a comprehensive study of models of dark matter (DM) in a Universe with a non-thermal cosmological history, i.e with a phase of pressure-less matter domination before the onset of big-bang nucleosynethesis (BBN). Such cosmological histories are generically predicted by UV completions that contain gravitationally coupled scalar fields (moduli). Read More

We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. Read More

Kreuzer and Skarke famously produced the largest known database of Calabi-Yau threefolds by providing a complete construction of all 473,800,776 reflexive polyhedra that exist in four dimensions. These polyhedra describe the singular limits of ambient toric varieties in which Calabi-Yau threefolds can exist as hypersurfaces. In this paper, we review how to extract topological and geometric information about Calabi-Yau threefolds using the toric construction, and we provide, in a companion online database (see http://nuweb1. Read More

We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. Read More

We present an intriguing and precise interplay between algebraic geometry and the phenomenology of generations of particles. Using the electroweak sector of the MSSM as a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple generations of Standard Model matter and Higgs doublets. The space is shown to have Calabi-Yau, Grassmannian, and toric signatures which sensitively depend on the number of generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos. Read More

In this paper, we develop the theory of bi-freeness in an amalgamated setting. We construct the operator-valued bi-free cumulant functions, and show that the vanishing of mixed cumulants is necessary and sufficient for bi-free independence. Further, we develop a multiplicative convolution for operator-valued random variables and explore ways to construct bi-free pairs of B-faces. Read More

Given a finite depth subfactor planar algebra $\mathcal{P}$ endowed with the graded $*$-algebra structures $\{Gr_k^+ \mathcal{P}\}_{k\in\mathbb{N}}$ of Guionnet, Jones, and Shlyakhtenko, there is a sequence of canonical traces $Tr_{k,+}$ on $Gr_k^+\mathcal{P}$ induced by the Temperley-Lieb diagrams and a sequence of trace-preserving embeddings into the bounded operators on a Hilbert space. Via these embeddings the $*$-algebras $\{Gr_k^+\mathcal{P}\}_{k\in \mathbb{N}}$ generate a tower of non-commutative probability spaces $\{M_{k,+}\}_{k\in\mathbb{N}}$ whose inclusions recover $\mathcal{P}$ as its standard invariant. We show that traces $Tr_{k,+}^{(v)}$ induced by certain small perturbations of the Temperley-Lieb diagrams yield trace-preserving embeddings of $Gr_k^+\mathcal{P}$ that generate the same tower $\{M_{k,+}\}_{k\in\mathbb{N}}$. Read More

We demonstrate that the notions of bi-free independence and combinatorial-bi-free independence of two-faced families are equivalent using a diagrammatic view of bi-non-crossing partitions. These diagrams produce an operator model on a Fock space suitable for representing any two-faced family of non-commutative random variables. Furthermore, using a Kreweras complement on bi-non-crossing partitions we establish the expected formulas for the multiplicative convolution of a bi-free pair of two-faced families. Read More

We present an updated study of the planets known to orbit 55 Cancri A using 1,418 high-precision radial velocity observations from four observatories (Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). Read More

We explain the origin of the Veronese surface in the vacuum moduli space geometry of the MSSM electroweak sector. While this result appeared many years ago using techniques of computational algebraic geometry, it has never been demonstrated analytically. Here, we present an analytical derivation of the vacuum geometry of the electroweak theory by understanding how the F- and D-term relations lead to the Veronese surface. Read More

Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. Read More

We continue the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In this installment we consider Type IIB string theory compactified on a Calabi-Yau orientifold in the presence of fluxes, in the manner originally formulated by Kachru, et al. We allow for a variety of potential uplift mechanisms and embeddings of the Standard Model field content into D3 and D7 brane configurations. Read More

In the 20+ years of Doppler observations of stars, scientists have uncovered a diverse population of extrasolar multi-planet systems. A common technique for characterizing the orbital elements of these planets is Markov chain Monte Carlo (MCMC), using a Keplerian model with random walk proposals and paired with the Metropolis-Hastings algorithm. For approximately a couple of dozen planetary systems with Doppler observations, there are strong planet-planet interactions due to the system being in or near a mean-motion resonance (MMR). Read More

We adapt the free monotone transport results of Guionnet and Shlyakhtenko to the type $\text{III}$ case. As a direct application, we obtain that the $q$-deformed Araki-Woods algebras are isomorphic (for sufficiently small $|q|$). Read More

Differential privacy formalises privacy-preserving mechanisms that provide access to a database. We pose the question of whether Bayesian inference itself can be used directly to provide private access to data, with no modification. The answer is affirmative: under certain conditions on the prior, sampling from the posterior distribution can be used to achieve a desired level of privacy and utility. Read More

We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). The case of heterotic string theory, in which the dilaton is stabilized via non-perturbative corrections to the Kahler metric, will be considered first. This model is highly constrained and therefore predictive. Read More

We present Swarm-NG, a C++ library for the efficient direct integration of many n-body systems using highly-parallel Graphics Processing Unit (GPU), such as NVIDIA's Tesla T10 and M2070 GPUs. While previous studies have demonstrated the benefit of GPUs for n-body simulations with thousands to millions of bodies, Swarm-NG focuses on many few-body systems, e.g. Read More

We describe an efficient, construction independent, algorithmic test to determine whether Calabi--Yau threefolds admit a structure compatible with the Large Volume moduli stabilization scenario of type IIB superstring theory. Using the algorithm, we scan complete intersection and toric hypersurface Calabi-Yau threefolds with $2 \leq h^{1,1} \le 4$ and deduce that 418 among 4434 manifolds have a Large Volume Limit with a single large four-cycle. We describe major extensions to this survey, which are currently underway. Read More

2012Jun

We investigate a family of poisoning attacks against Support Vector Machines (SVM). Such attacks inject specially crafted training data that increases the SVM's test error. Central to the motivation for these attacks is the fact that most learning algorithms assume that their training data comes from a natural or well-behaved distribution. Read More

We report the discovery via radial velocity of a short-period (P = 2.430420 \pm 0.000006 days) companion to the F-type main sequence star TYC 2930-00872-1. Read More

We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. Read More

2011Nov
Authors: K. Abe, N. Abgrall, Y. Ajima, H. Aihara, J. B. Albert, C. Andreopoulos, B. Andrieu, M. D. Anerella, S. Aoki, O. Araoka, J. Argyriades, A. Ariga, T. Ariga, S. Assylbekov, D. Autiero, A. Badertscher, M. Barbi, G. J. Barker, G. Barr, M. Bass, M. Batkiewicz, F. Bay, S. Bentham, V. Berardi, B. E. Berger, I. Bertram, M. Besnier, J. Beucher, D. Beznosko, S. Bhadra, F. d. M. Blaszczyk, J. Blocki, A. Blondel, C. Bojechko, J. Bouchez, S. B. Boyd, A. Bravar, C. Bronner, D. G. Brook-Roberge, N. Buchanan, H. Budd, D. Calvet, S. L. Cartwright, A. Carver, R. Castillo, M. G. Catanesi, A. Cazes, A. Cervera, C. Chavez, S. Choi, G. Christodoulou, J. Coleman, G. Collazuol, W. Coleman, K. Connolly, A. Curioni, A. Dabrowska, I. Danko, R. Das, G. S. Davies, S. Davis, M. Day, G. De Rosa, J. P. A. M. de André, P. de Perio, T. Dealtry, A. Delbart, C. Densham, F. Di Lodovico, S. Di Luise, P. Dinh Tran, J. Dobson, U. Dore, O. Drapier, F. Dufour, J. Dumarchez, S. Dytman, M. Dziewiecki, M. Dziomba, S. Emery, A. Ereditato, J. E. Escallier, L. Escudero, L. S. Esposito, M. Fechner, A. Ferrero, A. J. Finch, E. Frank, Y. Fujii, Y. Fukuda, V. Galymov, G. L. Ganetis, F. C. Gannaway, A. Gaudin, A. Gendotti, M. George, S. Giffin, C. Giganti, K. Gilje, A. K. Ghosh, T. Golan, M. Goldhaber, J. J. Gomez-Cadenas, S. Gomi, M. Gonin, N. Grant, A. Grant, P. Gumplinger, P. Guzowski, A. Haesler, M. D. Haigh, K. Hamano, C. Hansen, D. Hansen, T. Hara, P. F. Harrison, B. Hartfiel, M. Hartz, T. Haruyama, T. Hasegawa, N. C. Hastings, A. Hatzikoutelis, K. Hayashi, Y. Hayato, C. Hearty, R. L. Helmer, R. Henderson, N. Higashi, J. Hignight, A. Hillairet, E. Hirose, J. Holeczek, S. Horikawa, A. Hyndman, A. K. Ichikawa, K. Ieki, M. Ieva, M. Iida, M. Ikeda, J. Ilic, J. Imber, T. Ishida, C. Ishihara, T. Ishii, S. J. Ives, M. Iwasaki, K. Iyogi, A. Izmaylov, B. Jamieson, R. A. Johnson, K. K. Joo, G. V. Jover-Manas, C. K. Jung, H. Kaji, T. Kajita, H. Kakuno, J. Kameda, K. Kaneyuki, D. Karlen, K. Kasami, I. Kato, H. Kawamuko, E. Kearns, M. Khabibullin, F. Khanam, A. Khotjantsev, D. Kielczewska, T. Kikawa, J. Kim, J. Y. Kim, S. B. Kim, N. Kimura, B. Kirby, J. Kisiel, P. Kitching, T. Kobayashi, G. Kogan, S. Koike, A. Konaka, L. L. Kormos, A. Korzenev, K. Koseki, Y. Koshio, Y. Kouzuma, K. Kowalik, V. Kravtsov, I. Kreslo, W. Kropp, H. Kubo, J. Kubota, Y. Kudenko, N. Kulkarni, Y. Kurimoto, R. Kurjata, T. Kutter, J. Lagoda, K. Laihem, M. Laveder, K. P. Lee, P. T. Le, J. M. Levy, C. Licciardi, I. T. Lim, T. Lindner, R. P. Litchfield, M. Litos, A. Longhin, G. D. Lopez, P. F. Loverre, L. Ludovici, T. Lux, M. Macaire, K. Mahn, Y. Makida, M. Malek, S. Manly, A. Marchionni, A. D. Marino, A. J. Marone, J. Marteau, J. F. Martin, T. Maruyama, T. Maryon, J. Marzec, P. Masliah, E. L. Mathie, C. Matsumura, K. Matsuoka, V. Matveev, K. Mavrokoridis, E. Mazzucato, N. McCauley, K. S. McFarland, C. McGrew, T. McLachlan, M. Messina, W. Metcalf, C. Metelko, M. Mezzetto, P. Mijakowski, C. A. Miller, A. Minamino, O. Mineev, S. Mine, A. D. Missert, G. Mituka, M. Miura, K. Mizouchi, L. Monfregola, F. Moreau, B. Morgan, S. Moriyama, A. Muir, A. Murakami, J. F. Muratore, M. Murdoch, S. Murphy, J. Myslik, N. Nagai, T. Nakadaira, M. Nakahata, T. Nakai, K. Nakajima, T. Nakamoto, K. Nakamura, S. Nakayama, T. Nakaya, D. Naples, M. L. Navin, B. Nelson, T. C. Nicholls, C. Nielsen, K. Nishikawa, H. Nishino, K. Nitta, T. Nobuhara, J. A. Nowak, Y. Obayashi, T. Ogitsu, H. Ohhata, T. Okamura, K. Okumura, T. Okusawa, S. M. Oser, M. Otani, R. A. Owen, Y. Oyama, T. Ozaki, M. Y. Pac, V. Palladino, V. Paolone, P. Paul, D. Payne, G. F. Pearce, J. D. Perkin, V. Pettinacci, F. Pierre, E. Poplawska, B. Popov, M. Posiadala, J. -M. Poutissou, R. Poutissou, P. Przewlocki, W. Qian, J. L. Raaf, E. Radicioni, P. N. Ratoff, T. M. Raufer, M. Ravonel, M. Raymond, F. Retiere, A. Robert, P. A. Rodrigues, E. Rondio, J. M. Roney, B. Rossi, S. Roth, A. Rubbia, D. Ruterbories, S. Sabouri, R. Sacco, K. Sakashita, F. Sánchez, A. Sarrat, K. Sasaki, K. Scholberg, J. Schwehr, M. Scott, D. I. Scully, Y. Seiya, T. Sekiguchi, H. Sekiya, M. Shibata, Y. Shimizu, M. Shiozawa, S. Short, M. Siyad, R. J. Smith, M. Smy, J. T. Sobczyk, H. Sobel, M. Sorel, A. Stahl, P. Stamoulis, J. Steinmann, B. Still, J. Stone, M. Stodulski, C. Strabel, R. Sulej, A. Suzuki, K. Suzuki, S. Suzuki, S. Y. Suzuki, Y. Suzuki, Y. Suzuki, J. Swierblewski, T. Szeglowski, M. Szeptycka, R. Tacik, M. Tada, M. Taguchi, S. Takahashi, A. Takeda, Y. Takenaga, Y. Takeuchi, K. Tanaka, H. A. Tanaka, M. Tanaka, M. M. Tanaka, N. Tanimoto, K. Tashiro, I. Taylor, A. Terashima, D. Terhorst, R. Terri, L. F. Thompson, A. Thorley, W. Toki, S. Tobayama, T. Tomaru, Y. Totsuka, C. Touramanis, T. Tsukamoto, M. Tzanov, Y. Uchida, K. Ueno, A. Vacheret, M. Vagins, G. Vasseur, T. Wachala, J. J. Walding, A. V. Waldron, C. W. Walter, P. J. Wanderer, J. Wang, M. A. Ward, G. P. Ward, D. Wark, M. O. Wascko, A. Weber, R. Wendell, N. West, L. H. Whitehead, G. Wikström, R. J. Wilkes, M. J. Wilking, Z. Williamson, J. R. Wilson, R. J. Wilson, T. Wongjirad, S. Yamada, Y. Yamada, A. Yamamoto, K. Yamamoto, Y. Yamanoi, H. Yamaoka, T. Yamauchi, C. Yanagisawa, T. Yano, S. Yen, N. Yershov, M. Yokoyama, T. Yuan, A. Zalewska, J. Zalipska, L. Zambelli, K. Zaremba, M. Ziembicki, E. D. Zimmerman, M. Zito, J. Zmuda

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. Read More

2011Jun
Authors: T2K Collaboration, K. Abe1, N. Abgrall2, Y. Ajima3, H. Aihara4, J. B. Albert5, C. Andreopoulos6, B. Andrieu7, S. Aoki8, O. Araoka9, J. Argyriades10, A. Ariga11, T. Ariga12, S. Assylbekov13, D. Autiero14, A. Badertscher15, M. Barbi16, G. J. Barker17, G. Barr18, M. Bass19, F. Bay20, S. Bentham21, V. Berardi22, B. E. Berger23, I. Bertram24, M. Besnier25, J. Beucher26, D. Beznosko27, S. Bhadra28, F. d. M. Blaszczyk29, A. Blondel30, C. Bojechko31, J. Bouchez32, S. B. Boyd33, A. Bravar34, C. Bronner35, D. G. Brook-Roberge36, N. Buchanan37, H. Budd38, D. Calvet39, S. L. Cartwright40, A. Carver41, R. Castillo42, M. G. Catanesi43, A. Cazes44, A. Cervera45, C. Chavez46, S. Choi47, G. Christodoulou48, J. Coleman49, W. Coleman50, G. Collazuol51, K. Connolly52, A. Curioni53, A. Dabrowska54, I. Danko55, R. Das56, G. S. Davies57, S. Davis58, M. Day59, G. DeRosa60, J. P. A. M. de Andre61, P. dePerio62, A. Delbart63, C. Densham64, F. DiLodovico65, S. DiLuise66, P. Dinh Tran67, J. Dobson68, U. Dore69, O. Drapier70, F. Dufour71, J. Dumarchez72, S. Dytman73, M. Dziewiecki74, M. Dziomba75, S. Emery76, A. Ereditato77, L. Escudero78, L. S. Esposito79, M. Fechner80, A. Ferrero81, A. J. Finch82, E. Frank83, Y. Fujii84, Y. Fukuda85, V. Galymov86, F. C. Gannaway87, A. Gaudin88, A. Gendotti89, M. George90, S. Giffin91, C. Giganti92, K. Gilje93, T. Golan94, M. Goldhaber95, J. J. Gomez-Cadenas96, M. Gonin97, N. Grant98, A. Grant99, P. Gumplinger100, P. Guzowski101, A. Haesler102, M. D. Haigh103, K. Hamano104, C. Hansen105, D. Hansen106, T. Hara107, P. F. Harrison108, B. Hartfiel109, M. Hartz110, T. Haruyama111, T. Hasegawa112, N. C. Hastings113, S. Hastings114, A. Hatzikoutelis115, K. Hayashi116, Y. Hayato117, C. Hearty118, R. L. Helmer119, R. Henderson120, N. Higashi121, J. Hignight122, E. Hirose123, J. Holeczek124, S. Horikawa125, A. Hyndman126, A. K. Ichikawa127, K. Ieki128, M. Ieva129, M. Iida130, M. Ikeda131, J. Ilic132, J. Imber133, T. Ishida134, C. Ishihara135, T. Ishii136, S. J. Ives137, M. Iwasaki138, K. Iyogi139, A. Izmaylov140, B. Jamieson141, R. A. Johnson142, K. K. Joo143, G. V. Jover-Manas144, C. K. Jung145, H. Kaji146, T. Kajita147, H. Kakuno148, J. Kameda149, K. Kaneyuki150, D. Karlen151, K. Kasami152, I. Kato153, E. Kearns154, M. Khabibullin155, F. Khanam156, A. Khotjantsev157, D. Kielczewska158, T. Kikawa159, J. Kim160, J. Y. Kim161, S. B. Kim162, N. Kimura163, B. Kirby164, J. Kisiel165, P. Kitching166, T. Kobayashi167, G. Kogan168, S. Koike169, A. Konaka170, L. L. Kormos171, A. Korzenev172, K. Koseki173, Y. Koshio174, Y. Kouzuma175, K. Kowalik176, V. Kravtsov177, I. Kreslo178, W. Kropp179, H. Kubo180, Y. Kudenko181, N. Kulkarni182, R. Kurjata183, T. Kutter184, J. Lagoda185, K. Laihem186, M. Laveder187, K. P. Lee188, P. T. Le189, J. M. Levy190, C. Licciardi191, I. T. Lim192, T. Lindner193, R. P. Litchfield194, M. Litos195, A. Longhin196, G. D. Lopez197, P. F. Loverre198, L. Ludovici199, T. Lux200, M. Macaire201, K. Mahn202, Y. Makida203, M. Malek204, S. Manly205, A. Marchionni206, A. D. Marino207, J. Marteau208, J. F. Martin209, T. Maruyama210, T. Maryon211, J. Marzec212, P. Masliah213, E. L. Mathie214, C. Matsumura215, K. Matsuoka216, V. Matveev217, K. Mavrokoridis218, E. Mazzucato219, N. McCauley220, K. S. McFarland221, C. McGrew222, T. McLachlan223, M. Messina224, W. Metcalf225, C. Metelko226, M. Mezzetto227, P. Mijakowski228, C. A. Miller229, A. Minamino230, O. Mineev231, S. Mine232, A. D. Missert233, G. Mituka234, M. Miura235, K. Mizouchi236, L. Monfregola237, F. Moreau238, B. Morgan239, S. Moriyama240, A. Muir241, A. Murakami242, M. Murdoch243, S. Murphy244, J. Myslik245, T. Nakadaira246, M. Nakahata247, T. Nakai248, K. Nakajima249, T. Nakamoto250, K. Nakamura251, S. Nakayama252, T. Nakaya253, D. Naples254, M. L. Navin255, B. Nelson256, T. C. Nicholls257, K. Nishikawa258, H. Nishino259, J. A. Nowak260, M. Noy261, Y. Obayashi262, T. Ogitsu263, H. Ohhata264, T. Okamura265, K. Okumura266, T. Okusawa267, S. M. Oser268, M. Otani269, R. A. Owen270, Y. Oyama271, T. Ozaki272, M. Y. Pac273, V. Palladino274, V. Paolone275, P. Paul276, D. Payne277, G. F. Pearce278, J. D. Perkin279, V. Pettinacci280, F. Pierre281, E. Poplawska282, B. Popov283, M. Posiadala284, J. -M. Poutissou285, R. Poutissou286, P. Przewlocki287, W. Qian288, J. L. Raaf289, E. Radicioni290, P. N. Ratoff291, T. M. Raufer292, M. Ravonel293, M. Raymond294, F. Retiere295, A. Robert296, P. A. Rodrigues297, E. Rondio298, J. M. Roney299, B. Rossi300, S. Roth301, A. Rubbia302, D. Ruterbories303, S. Sabouri304, R. Sacco305, K. Sakashita306, F. Sanchez307, A. Sarrat308, K. Sasaki309, K. Scholberg310, J. Schwehr311, M. Scott312, D. I. Scully313, Y. Seiya314, T. Sekiguchi315, H. Sekiya316, M. Shibata317, Y. Shimizu318, M. Shiozawa319, S. Short320, M. Syiad321, R. J. Smith322, M. Smy323, J. T. Sobczyk324, H. Sobel325, M. Sorel326, A. Stahl327, P. Stamoulis328, J. Steinmann329, B. Still330, J. Stone331, C. Strabel332, L. R. Sulak333, R. Sulej334, P. Sutcliffe335, A. Suzuki336, K. Suzuki337, S. Suzuki338, S. Y. Suzuki339, Y. Suzuki340, Y. Suzuki341, T. Szeglowski342, M. Szeptycka343, R. Tacik344, M. Tada345, S. Takahashi346, A. Takeda347, Y. Takenaga348, Y. Takeuchi349, K. Tanaka350, H. A. Tanaka351, M. Tanaka352, M. M. Tanaka353, N. Tanimoto354, K. Tashiro355, I. Taylor356, A. Terashima357, D. Terhorst358, R. Terri359, L. F. Thompson360, A. Thorley361, W. Toki362, T. Tomaru363, Y. Totsuka364, C. Touramanis365, T. Tsukamoto366, M. Tzanov367, Y. Uchida368, K. Ueno369, A. Vacheret370, M. Vagins371, G. Vasseur372, T. Wachala373, J. J. Walding374, A. V. Waldron375, C. W. Walter376, P. J. Wanderer377, J. Wang378, M. A. Ward379, G. P. Ward380, D. Wark381, M. O. Wascko382, A. Weber383, R. Wendell384, N. West385, L. H. Whitehead386, G. Wikstrom387, R. J. Wilkes388, M. J. Wilking389, J. R. Wilson390, R. J. Wilson391, T. Wongjirad392, S. Yamada393, Y. Yamada394, A. Yamamoto395, K. Yamamoto396, Y. Yamanoi397, H. Yamaoka398, C. Yanagisawa399, T. Yano400, S. Yen401, N. Yershov402, M. Yokoyama403, A. Zalewska404, J. Zalipska405, L. Zambelli406, K. Zaremba407, M. Ziembicki408, E. D. Zimmerman409, M. Zito410, J. Zmuda411
Affiliations: 1University of Tokyo, 2University of Geneva, 3High Energy Accelerator Research Organization, 4University of Tokyo, 5Duke University, 6STFC Rutherford Appleton Laboratory, 7UPMC, Universite Paris Diderot, 8Kobe University, 9High Energy Accelerator Research Organization, 10University of Geneva, 11University of Bern, 12University of Bern, 13Colorado State University, 14Universite de Lyon, 15ETH Zurich, 16University of Regina, 17University of Warwick, 18Oxford University, 19Colorado State University, 20University of Bern, 21Lancaster University, 22INFN Sezione di Bari and Universita` e Politecnico di Bari, 23Colorado State University, 24Lancaster University, 25Ecole Polytechnique IN2P3-CNRS, 26IRFU CEA Saclay, 27State University of New York at Stony Brook, 28York University, 29IRFU CEA Saclay, 30University of Geneva, 31University of Victoria, 328, deceased, 33University of Warwick, 34University of Geneva, 35Ecole Polytechnique IN2P3-CNRS, 36University of British Columbia, 37Colorado State University, 38University of Rochester, 39IRFU CEA Saclay, 40University of Sheffield, 41University of Warwick, 42Institut de Fisica d'Altes Energies, 43INFN Sezione di Bari and Universita` e Politecnico di Bari, 44Universite de Lyon, 45IFIC, 46University of Liverpool, 47Seoul National University, 48University of Liverpool, 49University of Liverpool, 50Louisiana State University, 51INFN Sezione di Padova and Universit`a di Padova, 52University of Washington, 53ETH Zurich, 54H. Niewodniczanski Institute of Nuclear Physics PAN, 55University of Pittsburgh, 56Colorado State University, 57Lancaster University, 58University of Washington, 59University of Rochester, 60INFN Sezione di Napoli and Universita` di Napoli, 61Ecole Polytechnique IN2P3-CNRS, 62University of Toronto, 63IRFU CEA Saclay, 64STFC Rutherford Appleton Laboratory, 65Queen Mary University of London, 66ETH Zurich, 67Ecole Polytechnique IN2P3-CNRS, 68Imperial College London, 69INFN Sezione di Roma and Universit`a di Roma "La Sapienza", 70Ecole Polytechnique IN2P3-CNRS, 71University of Geneva, 72UPMC, Universite Paris Diderot, 73University of Pittsburgh, 74Warsaw University of Technology, 75University of Washington, 76IRFU CEA Saclay, 77University of Bern, 78IFIC, 79ETH Zurich, 80Duke University, 81University of Geneva, 82Lancaster University, 83University of Bern, 84High Energy Accelerator Research Organization, 85Miyagi University of Education, 86York University, 87Queen Mary University of London, 88University of Victoria, 89ETH Zurich, 90Queen Mary University of London, 91University of Regina, 92Institut de Fisica d'Altes Energies, 93State University of New York at Stony Brook, 94Wroclaw University, 956, deceased, 96IFIC, 97Ecole Polytechnique IN2P3-CNRS, 98Lancaster University, 99STFC Daresbury Laboratory, 100TRIUMF, 101Imperial College London, 102University of Geneva, 103Oxford University, 104TRIUMF, 105IFIC, 106University of Pittsburgh, 107Kobe University, 108University of Warwick, 109Louisiana State University, 110York University, 111High Energy Accelerator Research Organization, 112High Energy Accelerator Research Organization, 113University of Regina, 114University of British Columbia, 115Lancaster University, 116High Energy Accelerator Research Organization, 117University of Tokyo, 118University of British Columbia, 119TRIUMF, 120TRIUMF, 121High Energy Accelerator Research Organization, 122State University of New York at Stony Brook, 123High Energy Accelerator Research Organization, 124University of Silesia, 125ETH Zurich, 126Queen Mary University of London, 127Kyoto University, 128Kyoto University, 129Institut de Fisica d'Altes Energies, 130High Energy Accelerator Research Organization, 131Kyoto University, 132STFC Rutherford Appleton Laboratory, 133State University of New York at Stony Brook, 134High Energy Accelerator Research Organization, 135University of Tokyo, 136High Energy Accelerator Research Organization, 137Imperial College London, 138University of Tokyo, 139University of Tokyo, 140Institute for Nuclear Research of the Russian Academy of Sciences, 141University of British Columbia, 142University of Colorado at Boulder, 143Chonnam National University, 144Institut de Fisica d'Altes Energies, 145State University of New York at Stony Brook, 146University of Tokyo, 147University of Tokyo, 148University of Tokyo, 149University of Tokyo, 15050, deceased, 151University of Victoria, 152High Energy Accelerator Research Organization, 153TRIUMF, 154Boston University, 155Institute for Nuclear Research of the Russian Academy of Sciences, 156Colorado State University, 157Institute for Nuclear Research of the Russian Academy of Sciences, 158University of Warsaw, 159Kyoto University, 160University of British Columbia, 161Chonnam National University, 162Seoul National University, 163High Energy Accelerator Research Organization, 164University of British Columbia, 165University of Silesia, 166University of Alberta, 167High Energy Accelerator Research Organization, 168Imperial College London, 169High Energy Accelerator Research Organization, 170TRIUMF, 171Lancaster University, 172University of Geneva, 173High Energy Accelerator Research Organization, 174University of Tokyo, 175University of Tokyo, 176The Andrzej Soltan Institute for Nuclear Studies, 177Colorado State University, 178University of Bern, 179University of California, 180Kyoto University, 181Institute for Nuclear Research of the Russian Academy of Sciences, 182Louisiana State University, 183Warsaw University of Technology, 184Louisiana State University, 185The Andrzej Soltan Institute for Nuclear Studies, 186RWTH Aachen University, 187INFN Sezione di Padova and Universit`a di Padova, 188University of Tokyo, 189State University of New York at Stony Brook, 190UPMC, Universite Paris Diderot, 191University of Regina, 192Chonnam National University, 193University of British Columbia, 194University of Warwick, 195Boston University, 196IRFU CEA Saclay, 197State University of New York at Stony Brook, 198INFN Sezione di Roma and Universit`a di Roma "La Sapienza", 199INFN Sezione di Roma and Universit`a di Roma "La Sapienza", 200Institut de Fisica d'Altes Energies, 201IRFU CEA Saclay, 202TRIUMF, 203High Energy Accelerator Research Organization, 204Imperial College London, 205University of Rochester, 206ETH Zurich, 207University of Colorado at Boulder, 208Universite de Lyon, 209University of Toronto, 210High Energy Accelerator Research Organization, 211Lancaster University, 212Warsaw University of Technology, 213Imperial College London, 214University of Regina, 215Osaka City University, Department of Physics, 216Kyoto University, 217Institute for Nuclear Research of the Russian Academy of Sciences, 218University of Liverpool, 219IRFU CEA Saclay, 220University of Liverpool, 221University of Rochester, 222State University of New York at Stony Brook, 223University of Tokyo, 224University of Bern, 225Louisiana State University, 226STFC Rutherford Appleton Laboratory, 227INFN Sezione di Padova and Universit`a di Padova, 228The Andrzej Soltan Institute for Nuclear Studies, 229TRIUMF, 230Kyoto University, 231Institute for Nuclear Research of the Russian Academy of Sciences, 232University of California, 233University of Colorado at Boulder, 234University of Tokyo, 235University of Tokyo, 236TRIUMF, 237IFIC, 238Ecole Polytechnique IN2P3-CNRS, 239University of Warwick, 240University of Tokyo, 241STFC Daresbury Laboratory, 242Kyoto University, 243University of Liverpool, 244University of Geneva, 245University of Victoria, 246High Energy Accelerator Research Organization, 247University of Tokyo, 248Osaka City University, Department of Physics, 249Osaka City University, Department of Physics, 250High Energy Accelerator Research Organization, 251High Energy Accelerator Research Organization, 252University of Tokyo, 253Kyoto University, 254University of Pittsburgh, 255University of Sheffield, 256State University of New York at Stony Brook, 257STFC Rutherford Appleton Laboratory, 258High Energy Accelerator Research Organization, 259University of Tokyo, 260Louisiana State University, 261Imperial College London, 262University of Tokyo, 263High Energy Accelerator Research Organization, 264High Energy Accelerator Research Organization, 265High Energy Accelerator Research Organization, 266University of Tokyo, 267Osaka City University, Department of Physics, 268University of British Columbia, 269Kyoto University, 270Queen Mary University of London, 271High Energy Accelerator Research Organization, 272Osaka City University, Department of Physics, 273Dongshin University, 274INFN Sezione di Napoli and Universita` di Napoli, 275University of Pittsburgh, 276State University of New York at Stony Brook, 277University of Liverpool, 278STFC Rutherford Appleton Laboratory, 279University of Sheffield, 280ETH Zurich, 2818, deceased, 282Queen Mary University of London, 283UPMC, Universite Paris Diderot, 284University of Warsaw, 285TRIUMF, 286TRIUMF, 287The Andrzej Soltan Institute for Nuclear Studies, 288STFC Rutherford Appleton Laboratory, 289Boston University, 290INFN Sezione di Bari and Universita` e Politecnico di Bari, 291Lancaster University, 292STFC Rutherford Appleton Laboratory, 293University of Geneva, 294Imperial College London, 295TRIUMF, 296UPMC, Universite Paris Diderot, 297University of Rochester, 298The Andrzej Soltan Institute for Nuclear Studies, 299University of Victoria, 300University of Bern, 301RWTH Aachen University, 302ETH Zurich, 303Colorado State University, 304University of British Columbia, 305Queen Mary University of London, 306High Energy Accelerator Research Organization, 307Institut de Fisica d'Altes Energies, 308IRFU CEA Saclay, 309High Energy Accelerator Research Organization, 310Duke University, 311Colorado State University, 312Imperial College London, 313University of Warwick, 314Osaka City University, Department of Physics, 315High Energy Accelerator Research Organization, 316University of Tokyo, 317High Energy Accelerator Research Organization, 318University of Tokyo, 319University of Tokyo, 320Imperial College London, 321STFC Rutherford Appleton Laboratory, 322Oxford University, 323University of California, 324Wroclaw University, 325University of California, 326IFIC, 327RWTH Aachen University, 328IFIC, 329RWTH Aachen University, 330Queen Mary University of London, 331Boston University, 332ETH Zurich, 333Boston University, 334The Andrzej Soltan Institute for Nuclear Studies, 335University of Liverpool, 336Kobe University, 337Kyoto University, 338High Energy Accelerator Research Organization, 339High Energy Accelerator Research Organization, 340High Energy Accelerator Research Organization, 341High Energy Accelerator Research Organization, 342University of Silesia, 343The Andrzej Soltan Institute for Nuclear Studies, 344University of Regina, 345High Energy Accelerator Research Organization, 346Kyoto University, 347University of Tokyo, 348University of Tokyo, 349Kobe University, 350High Energy Accelerator Research Organization, 351University of British Columbia, 352High Energy Accelerator Research Organization, 353High Energy Accelerator Research Organization, 354University of Tokyo, 355Osaka City University, Department of Physics, 356State University of New York at Stony Brook, 357High Energy Accelerator Research Organization, 358RWTH Aachen University, 359Queen Mary University of London, 360University of Sheffield, 361University of Liverpool, 362Colorado State University, 363High Energy Accelerator Research Organization, 36418, deceased, 365University of Liverpool, 366High Energy Accelerator Research Organization, 367Louisiana State University, 368Imperial College London, 369University of Tokyo, 370Imperial College London, 371University of California, 372IRFU CEA Saclay, 373H. Niewodniczanski Institute of Nuclear Physics PAN, 374Imperial College London, 375Oxford University, 376Duke University, 377Brookhaven National Laboratory, 378University of Tokyo, 379University of Sheffield, 380University of Sheffield, 381STFC Rutherford Appleton Laboratory, 382Imperial College London, 383Oxford University, 384Duke University, 385Oxford University, 386University of Warwick, 387University of Geneva, 388University of Washington, 389TRIUMF, 390Queen Mary University of London, 391Colorado State University, 392Duke University, 393University of Tokyo, 394High Energy Accelerator Research Organization, 395High Energy Accelerator Research Organization, 396Osaka City University, Department of Physics, 397High Energy Accelerator Research Organization, 398High Energy Accelerator Research Organization, 399State University of New York at Stony Brook, 400Kobe University, 401TRIUMF, 402Institute for Nuclear Research of the Russian Academy of Sciences, 403University of Tokyo, 404H. Niewodniczanski Institute of Nuclear Physics PAN, 405University of British Columbia, 406UPMC, Universite Paris Diderot, 407Warsaw University of Technology, 408Warsaw University of Technology, 409University of Colorado at Boulder, 410IRFU CEA Saclay, 411Wroclaw University

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. Read More

2011Jun
Authors: T2K Collaboration, N. Abgrall1, H. Aihara2, Y. Ajima3, J. B. Albert4, D. Allan5, P. -A. Amaudruz6, C. Andreopoulos7, B. Andrieu8, M. D. Anerella9, C. Angelsen10, S. Aoki11, O. Araoka12, J. Argyriades13, A. Ariga14, T. Ariga15, S. Assylbekov16, J. P. A. M. de André17, D. Autiero18, A. Badertscher19, O. Ballester20, M. Barbi21, G. J. Barker22, P. Baron23, G. Barr24, L. Bartoszek25, M. Batkiewicz26, F. Bay27, S. Bentham28, V. Berardi29, B. E. Berger30, H. Berns31, I. Bertram32, M. Besnier33, J. Beucher34, D. Beznosko35, S. Bhadra36, P. Birney37, D. Bishop38, E. Blackmore39, F. d. M. Blaszczyk40, J. Blocki41, A. Blondel42, A. Bodek43, C. Bojechko44, J. Bouchez45, T. Boussuge46, S. B. Boyd47, M. Boyer48, N. Braam49, R. Bradford50, A. Bravar51, K. Briggs52, J. D. Brinson53, C. Bronner54, D. G. Brook-Roberge55, M. Bryant56, N. Buchanan57, H. Budd58, M. Cadabeschi59, R. G. Calland60, D. Calvet61, J. Caravaca Rodríguez62, J. Carroll63, S. L. Cartwright64, A. Carver65, R. Castillo66, M. G. Catanesi67, C. Cavata68, A. Cazes69, A. Cervera70, J. P. Charrier71, C. Chavez72, S. Choi73, S. Chollet74, G. Christodoulou75, P. Colas76, J. Coleman77, W. Coleman78, G. Collazuol79, K. Connolly80, P. Cooke81, A. Curioni82, A. Dabrowska83, I. Danko84, R. Das85, G. S. Davies86, S. Davis87, M. Day88, X. De La Broise89, P. de Perio90, G. De Rosa91, T. Dealtry92, A. Debraine93, E. Delagnes94, A. Delbart95, C. Densham96, F. Di Lodovico97, S. Di Luise98, P. Dinh Tran99, J. Dobson100, J. Doornbos101, U. Dore102, O. Drapier103, F. Druillole104, F. Dufour105, J. Dumarchez106, T. Durkin107, S. Dytman108, M. Dziewiecki109, M. Dziomba110, B. Ellison111, S. Emery112, A. Ereditato113, J. E. Escallier114, L. Escudero115, L. S. Esposito116, W. Faszer117, M. Fechner118, A. Ferrero119, A. Finch120, C. Fisher121, M. Fitton122, R. Flight123, D. Forbush124, E. Frank125, K. Fransham126, Y. Fujii127, Y. Fukuda128, M. Gallop129, V. Galymov130, G. L. Ganetis131, F. C. Gannaway132, A. Gaudin133, J. Gaweda134, A. Gendotti135, M. George136, S. Giffin137, C. Giganti138, K. Gilje139, I. Giomataris140, J. Giraud141, A. K. Ghosh142, T. Golan143, M. Goldhaber144, J. J. Gomez-Cadenas145, S. Gomi146, M. Gonin147, M. Goyette148, A. Grant149, N. Grant150, F. Grañena151, S. Greenwood152, P. Gumplinger153, P. Guzowski154, M. D. Haigh155, K. Hamano156, C. Hansen157, T. Hara158, P. F. Harrison159, B. Hartfiel160, M. Hartz161, T. Haruyama162, R. Hasanen163, T. Hasegawa164, N. C. Hastings165, S. Hastings166, A. Hatzikoutelis167, K. Hayashi168, Y. Hayato169, T. D. J. Haycock170, C. Hearty171, R. L. Helmer172, R. Henderson173, S. Herlant174, N. Higashi175, J. Hignight176, K. Hiraide177, E. Hirose178, J. Holeczek179, N. Honkanen180, S. Horikawa181, A. Hyndman182, A. K. Ichikawa183, K. Ieki184, M. Ieva185, M. Iida186, M. Ikeda187, J. Ilic188, J. Imber189, T. Ishida190, C. Ishihara191, T. Ishii192, S. J. Ives193, M. Iwasaki194, K. Iyogi195, A. Izmaylov196, B. Jamieson197, R. A. Johnson198, K. K. Joo199, G. Jover-Manas200, C. K. Jung201, H. Kaji202, T. Kajita203, H. Kakuno204, J. Kameda205, K. Kaneyuki206, D. Karlen207, K. Kasami208, V. Kasey209, I. Kato210, H. Kawamuko211, E. Kearns212, L. Kellet213, M. Khabibullin214, M. Khaleeq215, N. Khan216, A. Khotjantsev217, D. Kielczewska218, T. Kikawa219, J. Y. Kim220, S. -B. Kim221, N. Kimura222, B. Kirby223, J. Kisiel224, P. Kitching225, T. Kobayashi226, G. Kogan227, S. Koike228, T. Komorowski229, A. Konaka230, L. L. Kormos231, A. Korzenev232, K. Koseki233, Y. Koshio234, Y. Kouzuma235, K. Kowalik236, V. Kravtsov237, I. Kreslo238, W. Kropp239, H. Kubo240, J. Kubota241, Y. Kudenko242, N. Kulkarni243, L. Kurchaninov244, Y. Kurimoto245, R. Kurjata246, Y. Kurosawa247, T. Kutter248, J. Lagoda249, K. Laihem250, R. Langstaff251, M. Laveder252, T. B. Lawson253, P. T. Le254, A. Le Coguie255, M. Le Ross256, K. P. Lee257, M. Lenckowski258, C. Licciardi259, I. T. Lim260, T. Lindner261, R. P. Litchfield262, A. Longhin263, G. D. Lopez264, P. Lu265, L. Ludovici266, T. Lux267, M. Macaire268, L. Magaletti269, K. Mahn270, Y. Makida271, C. J. Malafis272, M. Malek273, S. Manly274, A. Marchionni275, C. Mark276, A. D. Marino277, A. J. Marone278, J. Marteau279, J. F. Martin280, T. Maruyama281, T. Maryon282, J. Marzec283, P. Masliah284, E. L. Mathie285, C. Matsumura286, K. Matsuoka287, V. Matveev288, K. Mavrokoridis289, E. Mazzucato290, N. McCauley291, K. S. McFarland292, C. McGrew293, T. McLachlan294, I. Mercer295, M. Messina296, W. Metcalf297, C. Metelko298, M. Mezzetto299, P. Mijakowski300, C. A. Miller301, A. Minamino302, O. Mineev303, S. Mine304, R. E. Minvielle305, G. Mituka306, M. Miura307, K. Mizouchi308, J. -P. Mols309, L. Monfregola310, E. Monmarthe311, F. Moreau312, B. Morgan313, S. Moriyama314, D. Morris315, A. Muir316, A. Murakami317, J. F. Muratore318, M. Murdoch319, S. Murphy320, J. Myslik321, G. Nagashima322, T. Nakadaira323, M. Nakahata324, T. Nakamoto325, K. Nakamura326, S. Nakayama327, T. Nakaya328, D. Naples329, B. Nelson330, T. C. Nicholls331, K. Nishikawa332, H. Nishino333, K. Nitta334, F. Nizery335, J. A. Nowak336, M. Noy337, Y. Obayashi338, T. Ogitsu339, H. Ohhata340, T. Okamura341, K. Okumura342, T. Okusawa343, C. Ohlmann344, K. Olchanski345, R. Openshaw346, S. M. Oser347, M. Otani348, R. A. Owen349, Y. Oyama350, T. Ozaki351, M. Y. Pac352, V. Palladino353, V. Paolone354, P. Paul355, D. Payne356, G. F. Pearce357, C. Pearson358, J. D. Perkin359, M. Pfleger360, F. Pierre361, D. Pierrepont362, P. Plonski363, P. Poffenberger364, E. Poplawska365, B. Popov366, M. Posiadala367, J. -M. Poutissou368, R. Poutissou369, R. Preece370, P. Przewlocki371, W. Qian372, J. L. Raaf373, E. Radicioni374, K. Ramos375, P. Ratoff376, T. M. Raufer377, M. Ravonel378, M. Raymond379, F. Retiere380, D. Richards381, J. -L. Ritou382, A. Robert383, P. A. Rodrigues384, E. Rondio385, M. Roney386, M. Rooney387, D. Ross388, B. Rossi389, S. Roth390, A. Rubbia391, D. Ruterbories392, R. Sacco393, S. Sadler394, K. Sakashita395, F. Sanchez396, A. Sarrat397, K. Sasaki398, P. Schaack399, J. Schmidt400, K. Scholberg401, J. Schwehr402, M. Scott403, D. I. Scully404, Y. Seiya405, T. Sekiguchi406, H. Sekiya407, G. Sheffer408, M. Shibata409, Y. Shimizu410, M. Shiozawa411, S. Short412, M. Siyad413, D. Smith414, R. J. Smith415, M. Smy416, J. Sobczyk417, H. Sobel418, S. Sooriyakumaran419, M. Sorel420, J. Spitz421, A. Stahl422, P. Stamoulis423, O. Star424, J. Statter425, L. Stawnyczy426, J. Steinmann427, J. Steffens428, B. Still429, M. Stodulski430, J. Stone431, C. Strabel432, T. Strauss433, R. Sulej434, P. Sutcliffe435, A. Suzuki436, K. Suzuki437, S. Suzuki438, S. Y. Suzuki439, Y. Suzuki440, Y. Suzuki441, J. Swierblewski442, T. Szeglowski443, M. Szeptycka444, R. Tacik445, M. Tada446, A. S. Tadepalli447, M. Taguchi448, S. Takahashi449, A. Takeda450, Y. Takenaga451, Y. Takeuchi452, H. A. Tanaka453, K. Tanaka454, M. Tanaka455, M. M. Tanaka456, N. Tanimoto457, K. Tashiro458, I. J. Taylor459, A. Terashima460, D. Terhorst461, R. Terri462, L. F. Thompson463, A. Thorley464, M. Thorpe465, W. Toki466, T. Tomaru467, Y. Totsuka468, C. Touramanis469, T. Tsukamoto470, V. Tvaskis471, M. Tzanov472, Y. Uchida473, K. Ueno474, M. Usseglio475, A. Vacheret476, M. Vagins477, J. F. Van Schalkwyk478, J. -C. Vanel479, G. Vasseur480, O. Veledar481, P. Vincent482, T. Wachala483, A. V. Waldron484, C. W. Walter485, P. J. Wanderer486, M. A. Ward487, G. P. Ward488, D. Wark489, D. Warner490, M. O. Wascko491, A. Weber492, R. Wendell493, J. Wendland494, N. West495, L. H. Whitehead496, G. Wikström497, R. J. Wilkes498, M. J. Wilking499, Z. Williamson500, J. R. Wilson501, R. J. Wilson502, K. Wong503, T. Wongjirad504, S. Yamada505, Y. Yamada506, A. Yamamoto507, K. Yamamoto508, Y. Yamanoi509, H. Yamaoka510, C. Yanagisawa511, T. Yano512, S. Yen513, N. Yershov514, M. Yokoyama515, A. Zalewska516, J. Zalipska517, K. Zaremba518, M. Ziembicki519, E. D. Zimmerman520, M. Zito521, J. Zmuda522
Affiliations: 1University of Geneva, 2University of Tokyo, 3High Energy Accelerator Research Organization, 4Duke University, 5STFC, Rutherford Appleton Laboratory, 6TRIUMF, 7STFC, Rutherford Appleton Laboratory, 8UPMC, Université Paris Diderot, 9Brookhaven National Laboratory, 10STFC, Rutherford Appleton Laboratory, 11Kobe University, 12High Energy Accelerator Research Organization, 13University of Geneva, 14University of Bern, 15University of Bern, 16Colorado State University, 17Ecole Polytechnique, IN2P3-CNRS, 18Université de Lyon, Université Claude Bernard Lyon 1, 19ETH Zurich, 20Institut de Fisica d'Altes Energies, 21University of Regina, 22University of Warwick, 23IRFU, CEA Saclay, 24Oxford University, 25University of Colorado at Boulder, 26H. Niewodniczanski Institute of Nuclear Physics PAN, 27University of Bern, 28Lancaster University, 29INFN Sezione di Bari and Università e Politecnico di Bari, 30Colorado State University, 31University of Washington, 32Lancaster University, 33Ecole Polytechnique, IN2P3-CNRS, 34IRFU, CEA Saclay, 35State University of New York at Stony Brook, 36York University, 37University of Victoria, 38TRIUMF, 39TRIUMF, 40IRFU, CEA Saclay, 41H. Niewodniczanski Institute of Nuclear Physics PAN, 42University of Geneva, 43University of Rochester, 44University of Victoria, 458, deceased, 46IRFU, CEA Saclay, 47University of Warwick, 48IRFU, CEA Saclay, 49University of Victoria, 50University of Rochester, 51University of Geneva, 52University of Warwick, 53Louisiana State University, 54Ecole Polytechnique, IN2P3-CNRS, 55University of British Columbia, 56University of British Columbia, 57Colorado State University, 58University of Rochester, 59University of Toronto, 60University of Liverpool, 61IRFU, CEA Saclay, 62Institut de Fisica d'Altes Energies, 63University of Liverpool, 64University of Sheffield, 65University of Warwick, 66Institut de Fisica d'Altes Energies, 67INFN Sezione di Bari and Università e Politecnico di Bari, 68IRFU, CEA Saclay, 69Université de Lyon, Université Claude Bernard Lyon 1, 70IFIC, 71IRFU, CEA Saclay, 72University of Liverpool, 73Seoul National University, 74Ecole Polytechnique, IN2P3-CNRS, 75University of Liverpool, 76IRFU, CEA Saclay, 77University of Liverpool, 78Louisiana State University, 79INFN Sezione di Padova and Università di Padova, 80University of Washington, 81University of Liverpool, 82ETH Zurich, 83H. Niewodniczanski Institute of Nuclear Physics PAN, 84University of Pittsburgh, 85Colorado State University, 86Lancaster University, 87University of Washington, 88University of Rochester, 89IRFU, CEA Saclay, 90University of Toronto, 91INFN Sezione di Napoli and Università di Napoli, 92Oxford University, 93Ecole Polytechnique, IN2P3-CNRS, 94IRFU, CEA Saclay, 95IRFU, CEA Saclay, 96STFC, Rutherford Appleton Laboratory, 97Queen Mary University of London, 98ETH Zurich, 99Ecole Polytechnique, IN2P3-CNRS, 100Imperial College London, 101TRIUMF, 102INFN Sezione di Roma and Università di Roma "La Sapienza'', 103Ecole Polytechnique, IN2P3-CNRS, 104IRFU, CEA Saclay, 105University of Geneva, 106UPMC, Université Paris Diderot, 107STFC, Rutherford Appleton Laboratory, 108University of Pittsburgh, 109Warsaw University of Technology, 110University of Washington, 111Louisiana State University, 112IRFU, CEA Saclay, 113University of Bern, 114Brookhaven National Laboratory, 115IFIC, 116ETH Zurich, 117TRIUMF, 118Duke University, 119University of Geneva, 120Lancaster University, 121TRIUMF, 122STFC, Rutherford Appleton Laboratory, 123University of Rochester, 124University of Washington, 125University of Bern, 126University of Victoria, 127High Energy Accelerator Research Organization, 128Miyagi University of Education, 129TRIUMF, 130York University, 131Brookhaven National Laboratory, 132Queen Mary University of London, 133University of Victoria, 134Institut de Fisica d'Altes Energies, 135ETH Zurich, 136Queen Mary University of London, 137University of Regina, 138Institut de Fisica d'Altes Energies, 139State University of New York at Stony Brook, 140IRFU, CEA Saclay, 141IRFU, CEA Saclay, 142Brookhaven National Laboratory, 143Wroclaw University, 14455, deceased, 145IFIC, 146Kyoto University, 147Ecole Polytechnique, IN2P3-CNRS, 148TRIUMF, 149STFC, Daresbury Laboratory, 150STFC, Rutherford Appleton Laboratory, 151Institut de Fisica d'Altes Energies, 152Imperial College London, 153TRIUMF, 154Imperial College London, 155Oxford University, 156TRIUMF, 157IFIC, 158Kobe University, 159University of Warwick, 160Louisiana State University, 161York University, 162High Energy Accelerator Research Organization, 163University of Victoria, 164High Energy Accelerator Research Organization, 165University of Regina, 166University of British Columbia, 167Lancaster University, 168High Energy Accelerator Research Organization, 169University of Tokyo, 170University of Sheffield, 171University of British Columbia, 172TRIUMF, 173TRIUMF, 174IRFU, CEA Saclay, 175High Energy Accelerator Research Organization, 176State University of New York at Stony Brook, 177Kyoto University, 178High Energy Accelerator Research Organization, 179University of Silesia, 180University of Victoria, 181ETH Zurich, 182Queen Mary University of London, 183Kyoto University, 184Kyoto University, 185Institut de Fisica d'Altes Energies, 186High Energy Accelerator Research Organization, 187Kyoto University, 188STFC, Rutherford Appleton Laboratory, 189State University of New York at Stony Brook, 190High Energy Accelerator Research Organization, 191University of Tokyo, 192High Energy Accelerator Research Organization, 193Imperial College London, 194University of Tokyo, 195University of Tokyo, 196Institute for Nuclear Research of the Russian Academy of Sciences, 197University of British Columbia, 198University of Colorado at Boulder, 199Chonnam National University, 200Institut de Fisica d'Altes Energies, 201State University of New York at Stony Brook, 202University of Tokyo, 203University of Tokyo, 204University of Tokyo, 205University of Tokyo, 20626, deceased, 207University of Victoria, 208High Energy Accelerator Research Organization, 209Imperial College London, 210TRIUMF, 211Kyoto University, 212Boston University, 213University of Liverpool, 214Institute for Nuclear Research of the Russian Academy of Sciences, 215Imperial College London, 216TRIUMF, 217Institute for Nuclear Research of the Russian Academy of Sciences, 218University of Warsaw, 219Kyoto University, 220Chonnam National University, 221Seoul National University, 222High Energy Accelerator Research Organization, 223University of British Columbia, 224University of Silesia, 225University of Alberta, 226High Energy Accelerator Research Organization, 227Imperial College London, 228High Energy Accelerator Research Organization, 229Lancaster University, 230TRIUMF, 231Lancaster University, 232University of Geneva, 233High Energy Accelerator Research Organization, 234University of Tokyo, 235University of Tokyo, 236The Andrzej Soltan Institute for Nuclear Studies, 237Colorado State University, 238University of Bern, 239University of California, Irvine, 240Kyoto University, 241Kyoto University, 242Institute for Nuclear Research of the Russian Academy of Sciences, 243Louisiana State University, 244TRIUMF, 245Kyoto University, 246Warsaw University of Technology, 247Kyoto University, 248Louisiana State University, 249The Andrzej Soltan Institute for Nuclear Studies, 250RWTH Aachen University, 251University of Victoria, 252INFN Sezione di Padova and Università di Padova, 253University of Sheffield, 254State University of New York at Stony Brook, 255IRFU, CEA Saclay, 256TRIUMF, 257University of Tokyo, 258University of Victoria, 259University of Regina, 260Chonnam National University, 261University of British Columbia, 262University of Warwick, 263IRFU, CEA Saclay, 264State University of New York at Stony Brook, 265University of British Columbia, 266INFN Sezione di Roma and Università di Roma "La Sapienza'', 267Institut de Fisica d'Altes Energies, 268IRFU, CEA Saclay, 269INFN Sezione di Bari and Università e Politecnico di Bari, 270TRIUMF, 271High Energy Accelerator Research Organization, 272State University of New York at Stony Brook, 273Imperial College London, 274University of Rochester, 275ETH Zurich, 276TRIUMF, 277University of Colorado at Boulder, 278Brookhaven National Laboratory, 279Université de Lyon, Université Claude Bernard Lyon 1, 280University of Toronto, 281High Energy Accelerator Research Organization, 282Lancaster University, 283Warsaw University of Technology, 284Imperial College London, 285University of Regina, 286Osaka City University, 287Kyoto University, 288Institute for Nuclear Research of the Russian Academy of Sciences, 289University of Liverpool, 290IRFU, CEA Saclay, 291University of Liverpool, 292University of Rochester, 293State University of New York at Stony Brook, 294University of Tokyo, 295Lancaster University, 296University of Bern, 297Louisiana State University, 298STFC, Rutherford Appleton Laboratory, 299INFN Sezione di Padova and Università di Padova, 300The Andrzej Soltan Institute for Nuclear Studies, 301TRIUMF, 302Kyoto University, 303Institute for Nuclear Research of the Russian Academy of Sciences, 304University of California, Irvine, 305Louisiana State University, 306University of Tokyo, 307University of Tokyo, 308TRIUMF, 309IRFU, CEA Saclay, 310IFIC, 311IRFU, CEA Saclay, 312Ecole Polytechnique, IN2P3-CNRS, 313University of Warwick, 314University of Tokyo, 315TRIUMF, 316STFC, Daresbury Laboratory, 317Kyoto University, 318Brookhaven National Laboratory, 319University of Liverpool, 320University of Geneva, 321University of Victoria, 322State University of New York at Stony Brook, 323High Energy Accelerator Research Organization, 324University of Tokyo, 325High Energy Accelerator Research Organization, 326High Energy Accelerator Research Organization, 327University of Tokyo, 328Kyoto University, 329University of Pittsburgh, 330State University of New York at Stony Brook, 331STFC, Rutherford Appleton Laboratory, 332High Energy Accelerator Research Organization, 333University of Tokyo, 334Kyoto University, 335IRFU, CEA Saclay, 336Louisiana State University, 337Imperial College London, 338University of Tokyo, 339High Energy Accelerator Research Organization, 340High Energy Accelerator Research Organization, 341High Energy Accelerator Research Organization, 342University of Tokyo, 343Osaka City University, 344TRIUMF, 345TRIUMF, 346TRIUMF, 347University of British Columbia, 348Kyoto University, 349Queen Mary University of London, 350High Energy Accelerator Research Organization, 351Osaka City University, 352Dongshin University, 353INFN Sezione di Napoli and Università di Napoli, 354University of Pittsburgh, 355State University of New York at Stony Brook, 356University of Liverpool, 357STFC, Rutherford Appleton Laboratory, 358TRIUMF, 359University of Sheffield, 360University of Victoria, 3618, deceased, 362IRFU, CEA Saclay, 363Warsaw University of Technology, 364University of Victoria, 365Queen Mary University of London, 366UPMC, Université Paris Diderot, 367University of Warsaw, 368TRIUMF, 369TRIUMF, 370STFC, Rutherford Appleton Laboratory, 371The Andrzej Soltan Institute for Nuclear Studies, 372STFC, Rutherford Appleton Laboratory, 373Boston University, 374INFN Sezione di Bari and Università e Politecnico di Bari, 375State University of New York at Stony Brook, 376Lancaster University, 377STFC, Rutherford Appleton Laboratory, 378University of Geneva, 379Imperial College London, 380TRIUMF, 381University of Warwick, 382IRFU, CEA Saclay, 383UPMC, Université Paris Diderot, 384University of Rochester, 385The Andrzej Soltan Institute for Nuclear Studies, 386University of Victoria, 387STFC, Rutherford Appleton Laboratory, 388TRIUMF, 389University of Bern, 390RWTH Aachen University, 391ETH Zurich, 392Colorado State University, 393Queen Mary University of London, 394University of Sheffield, 395High Energy Accelerator Research Organization, 396Institut de Fisica d'Altes Energies, 397IRFU, CEA Saclay, 398High Energy Accelerator Research Organization, 399Imperial College London, 400State University of New York at Stony Brook, 401Duke University, 402Colorado State University, 403Imperial College London, 404University of Warwick, 405Osaka City University, 406High Energy Accelerator Research Organization, 407University of Tokyo, 408TRIUMF, 409High Energy Accelerator Research Organization, 410University of Tokyo, 411University of Tokyo, 412Imperial College London, 413STFC, Rutherford Appleton Laboratory, 414Louisiana State University, 415Oxford University, 416University of California, Irvine, 417Wroclaw University, 418University of California, Irvine, 419TRIUMF, 420IFIC, 421University of Colorado at Boulder, 422RWTH Aachen University, 423IFIC, 424TRIUMF, 425Lancaster University, 426York University, 427RWTH Aachen University, 428State University of New York at Stony Brook, 429Queen Mary University of London, 430H. Niewodniczanski Institute of Nuclear Physics PAN, 431Boston University, 432ETH Zurich, 433ETH Zurich, 434The Andrzej Soltan Institute for Nuclear Studies, 435University of Liverpool, 436Kobe University, 437Kyoto University, 438High Energy Accelerator Research Organization, 439High Energy Accelerator Research Organization, 440High Energy Accelerator Research Organization, 441High Energy Accelerator Research Organization, 442H. Niewodniczanski Institute of Nuclear Physics PAN, 443University of Silesia, 444The Andrzej Soltan Institute for Nuclear Studies, 445University of Regina, 446High Energy Accelerator Research Organization, 447State University of New York at Stony Brook, 448Kyoto University, 449Kyoto University, 450University of Tokyo, 451University of Tokyo, 452Kobe University, 453University of British Columbia, 454High Energy Accelerator Research Organization, 455High Energy Accelerator Research Organization, 456High Energy Accelerator Research Organization, 457University of Tokyo, 458Osaka City University, 459State University of New York at Stony Brook, 460High Energy Accelerator Research Organization, 461RWTH Aachen University, 462Queen Mary University of London, 463University of Sheffield, 464University of Liverpool, 465STFC, Rutherford Appleton Laboratory, 466Colorado State University, 467High Energy Accelerator Research Organization, 46821, deceased, 469University of Liverpool, 470High Energy Accelerator Research Organization, 471University of Victoria, 472Louisiana State University, 473Imperial College London, 474University of Tokyo, 475IRFU, CEA Saclay, 476Imperial College London, 477University of California, Irvine, 478Imperial College London, 479Ecole Polytechnique, IN2P3-CNRS, 480IRFU, CEA Saclay, 481University of Sheffield, 482TRIUMF, 483H. Niewodniczanski Institute of Nuclear Physics PAN, 484Oxford University, 485Duke University, 486Brookhaven National Laboratory, 487University of Sheffield, 488University of Sheffield, 489STFC, Rutherford Appleton Laboratory, 490Colorado State University, 491Imperial College London, 492Oxford University, 493Duke University, 494University of British Columbia, 495Oxford University, 496University of Warwick, 497University of Geneva, 498University of Washington, 499TRIUMF, 500Oxford University, 501Queen Mary University of London, 502Colorado State University, 503TRIUMF, 504Duke University, 505University of Tokyo, 506High Energy Accelerator Research Organization, 507High Energy Accelerator Research Organization, 508Osaka City University, 509High Energy Accelerator Research Organization, 510High Energy Accelerator Research Organization, 511State University of New York at Stony Brook, 512Kobe University, 513TRIUMF, 514Institute for Nuclear Research of the Russian Academy of Sciences, 515University of Tokyo, 516H. Niewodniczanski Institute of Nuclear Physics PAN, 517University of British Columbia, 518Warsaw University of Technology, 519Warsaw University of Technology, 520University of Colorado at Boulder, 521IRFU, CEA Saclay, 522Wroclaw University

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Read More

We consider associated production of squarks and gluinos with the lightest supersymmetric particle (LSP), or states nearly degenerate in mass with it. Though sub-dominant to pair production of color SU(3)-charged superpartners, these processes are directly sensitive to the wavefunction composition of the lightest neutralinos. Exploiting event-shape variables -- including some introduced here for the first time -- we are able to identify the composition of the LSP by selecting events involving a single high-pT jet recoiling against missing transverse energy. Read More

We present a focused study of a predictive unified model whose measurable consequences are immediately relevant to early discovery prospects of supersymmetry at the LHC. ATLAS and CMS have released their analysis with 35~pb$^{-1}$ of data and the model class we discuss is consistent with this data. It is shown that with an increase in luminosity the LSP dark matter mass and the gluino mass can be inferred from simple observables such as kinematic edges in leptonic channels and peak values in effective mass distributions. Read More

With the aim of uncovering viable regions of parameter space in deflected mirage mediation (DMM) models of supersymmetry breaking, we study the landscape of particle mass hierarchies for the lightest four non-Standard Model states for DMM models and compare the results to that of minimal supergravity/constrained MSSM (mSUGRA/CMSSM) models, building on previous studies of Feldman, Liu, and Nath. Deflected mirage mediation is a string-motivated scenario in which the soft terms include comparable contributions from gravity mediation, gauge mediation, and anomaly mediation. DMM allows a wide variety of phenomenologically preferred models with light charginos and neutralinos, including novel patterns in which the heavy Higgs particles are lighter than the lightest superpartner. Read More

We carry out an analysis of the potential of the Large Hadron Collider (LHC) to discover supersymmetry in runs at $\sqrt s=7$ TeV with an accumulated luminosity of (0.1--2) fb$^{-1}$ of data. The analysis is done both with minimal supergravity (mSUGRA) and supergravity (SUGRA) models with non-universal soft breaking. Read More

2010Jul
Affiliations: 1IPAC/Caltech, 2IPAC/Caltech, 3Australian National University, 4IPAC/Caltech, 5Harvard-Smithsonian Center for Astrophysics, 6Anglo-Australian Observatory, 7Anglo-Australian Observatory, 8Anglo-Australian Observatory

The Two Micron All-Sky Survey (2MASS) has provided a uniform photometric catalog to search for previously unknown red AGN and QSOs. We have extended the search to the southern equatorial sky by obtaining spectra for 1182 AGN candidates using the 6dF multifibre spectrograph on the UK Schmidt Telescope. These were scheduled as auxiliary targets for the 6dF Galaxy Redshift Survey. Read More

Classifiers are often used to detect miscreant activities. We study how an adversary can systematically query a classifier to elicit information that allows the adversary to evade detection while incurring a near-minimal cost of modifying their intended malfeasance. We generalize the theory of Lowd and Meek (2005) to the family of convex-inducing classifiers that partition input space into two sets one of which is convex. Read More

Classifiers are often used to detect miscreant activities. We study how an adversary can efficiently query a classifier to elicit information that allows the adversary to evade detection at near-minimal cost. We generalize results of Lowd and Meek (2005) to convex-inducing classifiers. Read More

Motivated by specific connections to dark matter signatures, we study the prospects of observing the presence of a relatively light gluino whose mass is in the range ~(500-900) GeV with a wino-like lightest supersymmetric particle with mass in the range of ~(170-210) GeV. The light gaugino spectra studied here is generally different from other models, and in particular those with a wino dominated LSP, in that here the gluinos can be significantly lighter. The positron excess reported by the PAMELA satellite data is accounted for by annihilations of the wino LSP and their relic abundance can generally be brought near the WMAP constraints due to the late decay of a modulus field re-populating the density of relic dark matter. Read More

We compare the collider phenomenology of mirage mediation and deflected mirage mediation, which are two recently proposed "mixed" supersymmetry breaking scenarios motivated from string compactifications. The scenarios differ in that deflected mirage mediation includes contributions from gauge mediation in addition to the contributions from gravity mediation and anomaly mediation also present in mirage mediation. The threshold effects from gauge mediation can drastically alter the low energy spectrum from that of pure mirage mediation models, resulting in some cases in a squeezed gaugino spectrum and a gluino that is much lighter than other colored superpartners. Read More

The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Read More

2009Dec
Affiliations: 1Northeastern University, 2Northeastern University

We consider the possibility that the recently reported events at the CDMS-II direct dark matter detection experiment are the result of coherent scattering of supersymmetric neutralinos. In such a scenario we argue that non-universal soft supersymmetry breaking gaugino masses are favored with a resulting lightest neutralino with significant Higgsino and wino components. We discuss the accompanying signals which must be seen at liquid-xenon direct detection experiments and indirect detection experiments if such a supersymmetric interpretation is to be maintained. Read More

2009Oct

We report on the first step of a systematic study of how gaugino mass unification can be probed at the LHC in a quasi-model independent manner. Here we focus our attention on the theoretically well-motivated mirage pattern of gaugino masses, a one-parameter family of models of which universal (high scale) gaugino masses are a limiting case. Using a statistical method to optimize our signature selection we arrive at three ensembles of observables targeted at the physics of the gaugino sector, allowing for a determination of this non-universality parameter without reconstructing individual mass eigenvalues or the soft supersymmetry-breaking gaugino masses themselves. Read More