Atsushi Nishizawa - Kyoto University, Kyoto, Japan

Atsushi Nishizawa
Are you Atsushi Nishizawa?

Claim your profile, edit publications, add additional information:

Contact Details

Atsushi Nishizawa
Kyoto University, Kyoto, Japan

Pubs By Year

External Links

Pub Categories

Cosmology and Nongalactic Astrophysics (30)
General Relativity and Quantum Cosmology (20)
Astrophysics of Galaxies (15)
High Energy Astrophysical Phenomena (5)
Quantum Physics (4)
High Energy Physics - Theory (2)
Mathematical Physics (1)
Mathematics - Mathematical Physics (1)
Solar and Stellar Astrophysics (1)
Instrumentation and Methods for Astrophysics (1)
Earth and Planetary Astrophysics (1)

Publications Authored By Atsushi Nishizawa

We have measured the clustering of galaxies around active galactic nuclei (AGN) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from 250deg$^{2}$ S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0. Read More

We present initial results from the Subaru Strategic Program (SSP) with Hyper Suprime-Cam (HSC) on a comprehensive survey of emission line galaxies at $z<1.5$. In the first data release of the HSC-SSP, two narrowband data (NB816 and NB921) down to 25. Read More

We present the environmental dependence of colour, stellar mass, and star formation (SF) activity in H-alpha-selected galaxies along the huge cosmic web at z=0.4 hosting twin clusters in DEEP2-3 field, discovered by Subaru Strategic Programme of Hyper Suprime-Cam (HSC SSP). By combining photo-z selected galaxies and H-alpha emitters selected with broad-band and narrow-band data of the recent internal data release of HSC SSP (DR1), we confirm that galaxies in higher-density environments or galaxies in the cluster central regions show redder colours. Read More

Photometric redshifts are a key component of many science objectives in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). In this paper, we describe and compare the codes used to compute photometric redshifts for HSC-SSP, how we calibrate them, and the typical accuracy we achieve with HSC five-band photometry (grizy). We introduce a new point estimator based on an improved loss function and demonstrate that it works better than other commonly used estimators. Read More

We investigate the galaxy overdensity around <2 pMpc-scale quasar pairs at high (z>3) and low (z~1) redshift based on the unprecedentedly wide and deep optical survey of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first-year survey data covering effectively ~121 deg2 in full-color and depth, we find two luminous pairs at z~3.6 and 3. Read More

We present clustering properties from 579,492 Lyman break galaxies (LBGs) at $z\sim4-6$ over the 100 deg$^2$ sky (corresponding to a 1.4 Gpc$^3$ volume) identified in early data of the Hyper Suprime-Cam (HSC) Subaru strategic program survey. We derive angular correlation functions (ACFs) of the HSC LBGs with unprecedentedly high statistical accuracies at $z\sim4-6$, and compare them with the halo occupation distribution (HOD) models. Read More

We utilize the HSC CAMIRA cluster catalog and the photo-$z$ galaxy catalog constructed in the HSC wide field (S16A), covering $\sim$ 174 deg$^{2}$, to study the star formation activity of galaxies in different environments over 0.2 $<$ $z$ $<$ 1.1. Read More

We present the luminosity function of z=4 quasars based on the Hyper Suprime-Cam Subaru Strategic Program Wide layer imaging data in the g, r, i, z, and y bands covering 339.8 deg^2. From stellar objects, 1666 z~4 quasar candidates are selected by the g-dropout selection down to i=24. Read More

Authors: Hiroaki Aihara, Robert Armstrong, Steven Bickerton, James Bosch, Jean Coupon, Hisanori Furusawa, Yusuke Hayashi, Hiroyuki Ikeda, Yukiko Kamata, Hiroshi Karoji, Satoshi Kawanomoto, Michitaro Koike, Yutaka Komiyama, Robert H. Lupton, Sogo Mineo, Hironao Miyatake, Satoshi Miyazaki, Tomoki Morokuma, Yoshiyuki Obuchi, Yukie Oishi, Yuki Okura, Paul A. Price, Tadafumi Takata, Manobu M. Tanaka, Masayuki Tanaka, Yoko Tanaka, Tomohisa Uchida, Fumihiro Uraguchi, Yousuke Utsumi, Shiang-Yu Wang, Yoshihiko Yamada, Hitomi Yamanoi, Naoki Yasuda, Nobuo Arimoto, Masashi Chiba, Francois Finet, Hiroki Fujimori, Seiji Fujimoto, Junko Furusawa, Tomotsugu Goto, Andy Goulding, James E. Gunn, Yuichi Harikane, Takashi Hattori, Masao Hayashi, Krzysztof G. Helminiak, Ryo Higuchi, Chiaki Hikage, Paul T. P. Ho, Bau-Ching Hsieh, Kuiyun Huang, Song Huang, Masatoshi Imanishi, Ikuru Iwata, Anton T. Jaelani, Hung-Yu Jian, Nobunari Kashikawa, Nobuhiko Katayama, Takashi Kojima, Akira Konno, Shintaro Koshida, Alexie Leauthaud, C. -H. Lee, Lihwai Lin, Yen-Ting Lin, Rachel Mandelbaum, Yoshiki Matsuoka, Elinor Medezinski, Shoken Miyama, Rieko Momose, Anupreeta More, Surhud More, Shiro Mukae, Ryoma Murata, Hitoshi Murayama, Tohru Nagao, Fumiaki Nakata, Hiroko Niikura, Atsushi J. Nishizawa, Masamune Oguri, Nobuhiro Okabe, Yoshiaki Ono, Masato Onodera, Masafusa Onoue, Masami Ouchi, Tae-Soo Pyo, Takatoshi Shibuya, Kazuhiro Shimasaku, Melanie Simet, Joshua Speagle, David N. Spergel, Michael A. Strauss, Yuma Sugahara, Naoshi Sugiyama, Yasushi Suto, Nao Suzuki, Philip J. Tait, Masahiro Takada, Tsuyoshi Terai, Yoshiki Toba, Edwin L. Turner, Hisakazu Uchiyama, Keiichi Umetsu, Yuji Urata, Tomonori Usuda, Sherry Yeh, Suraphong Yuma

The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope. The survey started in March 2014. Read More

We present an optically-selected cluster catalog from the Hyper Suprime-Cam (HSC) Subaru Strategic Program. The HSC images are sufficiently deep to detect cluster member galaxies down to $M_*\sim 10^{10.2}M_\odot$ even at $z\sim 1$, allowing a reliable cluster detection at such high redshifts. Read More

The direct detections of merging binary black holes (BBH) by aLIGO have opened a new window to astronomy and testing gravity. It also brings us an opportunity to utilize BBH for a measurement of a cosmic expansion rate and to resolve the discrepancy problem of Hubble constant measured by other astrophysical means. In this paper we point out that there exists a small number of BBH that gives significantly small sky localization volume so that a host galaxy is uniquely identified. Read More

It is well known that two types of gravitational wave memory exist in general relativity (GR): the linear memory and the non-linear, or Christodoulou memory. These effects, especially the latter, depend on the specific form of Einstein equation. It can then be speculated that in modified theories of gravity, the memory can differ from the GR prediction, and provides novel phenomena to study these theories. Read More

We report the discovery of a new ultra-faint dwarf satellite companion of the Milky Way based on the early survey data from the Hyper Suprime-Cam Subaru Strategic Program. This new satellite, Virgo I, which is located in the constellation of Virgo, has been identified as a statistically significant (5.5 sigma) spatial overdensity of star-like objects with a well-defined main sequence and red giant branch in their color-magnitude diagram. Read More

A space-based interferometer such as eLISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. Read More

We propose to use pulsar scintillation measurements to test predictions of alternative theories of gravity. Comparing to single-path pulsar timing measurements, the scintillation measurements can achieve a factor of 10^5 improvement in timing accuracy, due to the effect of multi-path interference. Previous scintillation measurements of PSR B0834+06 have data acquisition for hours, making this approach sensitive to mHz gravitational waves. Read More

Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO/Virgo band within ten years, allowing for multi-band gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities $e_0\sim 10^{-3}$-$10^{-1}$ at the frequencies $f_0=10^{-2}$ Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate that eLISA should always be able to detect a nonzero $e_0$ whenever $e_0\gtrsim 10^{-2}$; if $e_0\sim 10^{-3}$, eLISA should detect nonzero eccentricity for a fraction $\sim 90\%$ ($\sim 25\%$) of binaries when the observation time is $T_{\rm obs}=5$ ($2$) years, respectively. Read More

We present a list of galaxy-scale lens candidates including a highly probable interacting galaxy-scale lens in the Hyper Suprime-Cam (HSC) imaging survey. We combine HSC imaging with the blended-spectra catalog from the Galaxy And Mass Assembly (GAMA) survey to identify lens candidates, and use lens mass modeling to confirm the candidates. We find 46 matches between the HSC S14A_0b imaging data release and the GAMA catalog. Read More

The first discovery of the gravitational wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Read More

In testing gravity a model-independent way, one of crucial tests is measuring the propagation speed of a gravitational wave (GW). In general relativity, a GW propagates with the speed of light, while in the alternative theories of gravity the propagation speed could deviate from the speed of light due to the modification of gravity or spacetime structure at a quantum level. Previously we proposed the method measuring the GW speed by directly comparing the arrival times between a GW and a photon from the binary merger of neutron stars or neutron star and black hole, assuming that it is associated with a short gamma-ray burst. Read More

Gravitational waves (GWs) from compact binary stars at cosmological distances are promising and powerful cosmological probes, referred to as the GW standard sirens. With future GW detectors, we will be able to precisely measure source luminosity distances out to a redshift $z\sim5$. To extract cosmological information, previously proposed cosmological studies using the GW standard sirens rely on source redshift information obtained through an extensive electromagnetic follow-up campaign. Read More

In quantum physics, measurement error and disturbance were first naively thought to be simply constrained by the Heisenberg uncertainty relation. Later, more rigorous analysis showed that the error and disturbance satisfy more subtle inequalities. Several versions of universally valid error-disturbance relations (EDR) have already been obtained and experimentally verified in the regimes where naive applications of the Heisenberg uncertainty relation failed. Read More

In a weak measurement with post-selection, a measurement value, called the weak value, can be amplified beyond the eigenvalues of the observable. However, there are some controversies whether the weak value amplification is practically useful or not in increasing sensitivity of the measurement in which fundamental quantum noise dominates. In this paper, we investigate the sensitivity limit of an optical interferometer by properly taking account quantum shot noise and radiation pressure noise. Read More

In the light of the history of researches on electromagnetic wave spectrum, a sharp emission line of gravitational-wave background (GWB) would be an interesting observational target. Here we study an efficient method to detect a line GWB by correlating data of multiple ground-based detectors. We find that the width of frequency bin for coarse graining is a critical parameter, and the commonly-used value 0. Read More

Detection of gravitational waves (GW) provides us an opportunity to test general relativity in strong and dynamical regimes of gravity. One of the tests is checking whether GW propagates with the speed of light or not. This test is crucial because the velocity of GW has not ever been directly measured. Read More

Recently, a combined model of the primordial inflation and the present cosmic acceleration has been proposed in the context of f(R) gravity. This model is composed of the late-time acceleration term and an R2 term, which enables the model to avoid high curvature singularity and describe a quasi-de Sitter inflationary phase in the early Universe. An interesting feature of this model is that the reheating dynamics after the inflation is significantly modified, in contrast to the original R2 model, and affects the shape of a gravitational wave background (GWB) spectrum. Read More

In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such additional polarization modes appear due to additional degrees of freedom in modified gravity theories. Also graviton mass, which could be different in each polarization, is another characteristic of modification of gravity. Read More

In the cosmic microwave background or galaxy density maps, missing fluctuations in masked regions can be reconstructed from fluctuations in the surrounding unmasked regions if the original fluctuations are sufficiently smooth. One reconstruction method involves applying a harmonic expansion iteratively to fluctuations in the unmasked region. In this paper, we discuss how well this reconstruction method can recover the original fluctuations depending on the prior of fluctuations and property of the masked region. Read More

We show how future gravitational-wave detectors would be able of discriminating between the concordance LCDM cosmological model and up-to-date competing alternatives, e.g. dynamical dark energy models (DE) or modified gravity theories (MG). Read More

The baryon acoustic oscillation (BAO) experiment requires a sufficiently dense sampling of large-scale structure tracers with spectroscopic redshift, which is observationally expensive especially at high redshifts $z\simgt 1$. Here we present an alternative route of the BAO analysis that uses the cross-correlation of sparse spectroscopic tracers with a much denser photometric sample, where the spectroscopic tracers can be quasars or bright, rare galaxies that are easier to access spectroscopically. We show that measurements of the cross-correlation as a function of the transverse comoving separation rather than the angular separation avoid a smearing of the BAO feature without mixing the different scales at different redshifts in the projection, even for a wide redshift slice $\Delta z\simeq 1$. Read More

We revisit an analytical model to describe the halo-matter cross-power spectrum and the halo auto-power spectrum in the weakly nonlinear regime, by combining the perturbation theory (PT) for matter clustering, the local bias model, and the halo bias. Nonlinearities in the power spectra arise from the nonlinear clustering of matter as well as the nonlinear relation between the matter and halo density fields. By using the "renormalization" approach, we express the nonlinear power spectra by a sum of the two contributions: the nonlinear matter power spectrum with the effective linear bias parameter, and the higher-order PT spectra having the halo bias parameters as the coefficients. Read More

The observation of gravitational waves with a global network of interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will make it possible to probe into the nature of space-time structure. Besides Einstein's general theory of relativity, there are several theories of gravitation that passed experimental tests so far. The gravitational-wave observation provides a new experimental test of alternative theories of gravity because a gravitational wave may have at most six independent modes of polarization, of which properties and number of modes are dependent on theories of gravity. Read More

Proposed space-based gravitational-wave (GW) detectors such as DECIGO and BBO will detect $\sim10^6$ neutron-star (NS) binaries and determine the luminosity distances to the binaries with high precision. Combining the luminosity distances with cosmologically-induced phase corrections on the GWs, cosmological expansion out to high redshift can be measured without the redshift determinations of host galaxies by electromagnetic observation and can be a unique probe for dark energy. This article is based on the results obtained in [1] where we investigated constraining power of the GW standard siren without redshift information on the equation of state of dark energy with future space-based GW detectors. Read More

If we assume that we live in the center of a spherical inhomogeneous universe, we can explain the apparent accelerating expansion of the universe without introducing the unknown dark energy or modifying gravitational theory. Direct measurement of the cosmic acceleration can be a powerful tool in distinguishing $\Lambda$CDM and the inhomogeneous models. If $\Lambda$CDM is the correct model, we have shown that DECIGO/BBO has sufficient ability to detect the positive redshift drift of the source by observing gravitational waves from neutron star binaries for 5-10 years. Read More

The reheating dynamics after the inflation induced by $R^2$-corrected $f(R)$ model is considered. To avoid the complexity of solving the fourth order equations, we analyze the inflationary and reheating dynamics in the Einstein frame and its analytical solutions are derived. We also perform numerical calculation including the backreaction from the particle creation and compare the results with the analytical solutions. Read More

We study the weak-value amplification (WVA) in a phase measurement with an optical interferometer in which shot noise limits the sensitivity. We compute the signal and the shot noise including the full-order interaction terms of the WVA, and show that the shot-noise contribution to a phase shift in a pointer variable is always larger than the final variance of the pointer variable. This yields difference in estimating noise level up to a factor of 1. Read More

One possibility for explaining the apparent accelerating expansion of the universe is that we live in the center of a spherically inhomogeneous universe. Although current observations cannot fully distinguish $\Lambda$CDM and these inhomogeneous models, direct measurement of the acceleration of the universe can be a powerful tool in probing them. We have shown that, if $\Lambda$CDM is the correct model, DECIGO/BBO would be able to detect the positive redshift drift (which is the time evolution of the source redshift $z$) in 3--5 year gravitational wave (GW) observations from neutron-star binaries, which enables us to rule out any Lema\^itre-Tolman-Bondi (LTB) void model with monotonically increasing density profile. Read More

Proposed space-based gravitational-wave (GW) detectors such as DECIGO and BBO will detect ~10^6 neutron-star (NS) binaries and determine the luminosity distances to the binaries with high precision. Combining the luminosity distances with cosmologically-induced phase corrections on the GWs, cosmological expansion out to high redshift can be measured without the redshift determinations of host galaxies by electromagnetic observation and be a unique probe for dark energy. On the other hand, such a NS-binary foreground should be subtracted to detect primordial GWs produced during inflation. Read More

Some exact formulae of the expectation values and probability densities in a weak measurement for an operator ${\bf A}$ which satisfies the property ${\bf A}^{2}=1$ are derived. These formulae include all-order effects of the unitary evolution due to the von-Neumann interaction. These are valid not only in the weak measurement regime but also in the strong measurement regime and tell us the connection between these two regime. Read More

Proposed space-based gravitational-wave detectors such as BBO and DECIGO can detect ~10^6 neutron-star binaries and determine luminosity distance to the binaries with a high precision. Combining the luminosity distance and electromagnetically-derived redshift, one would be able to probe cosmological expansion out to high redshift. In this paper, we show that the Hubble parameter as a function of redshift can be directly measured with monopole and dipole components of the luminosity distance on the sky. Read More

We use the mock catalog of galaxies, constructed based on the COSMOS galaxy catalog including information on photometric redshifts (photo-z) and SED types of galaxies, in order to study how to define a galaxy subsample suitable for weak lensing tomography feasible with optical (and NIR) multi-band data. Since most of useful cosmological information arises from the sample variance limited regime for upcoming lensing surveys, a suitable subsample can be obtained by discarding a large fraction of galaxies that have less reliable photo-z estimations. We develop a method to efficiently identify photo-z outliers by monitoring the width of posterior likelihood function of redshift estimation for each galaxies. Read More

In general relativity, a gravitational wave has two polarization modes (tensor mode), but it could have additional polarizations (scalar and vector modes) in the early stage of the universe, where the general relativity may not strictly hold and/or the effect of higher-dimensional gravity may become significant. In this paper, we discuss how to detect extra-polarization modes of stochastic gravitational wave background (GWB), and study the separability of each polarization using future space-based detectors such as BBO and DECIGO. We specifically consider two plausible setups of the spacecraft constellations consisting of two and four clusters, and estimate the sensitivity to each polarization mode of GWBs. Read More

In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such additional polarization modes appear due to additional degrees of freedom in modified theories of gravitation or theories with extra dimensions. Thus, observations of gravitational waves can be utilized to constrain the extended models of gravitation. Read More

We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scales relevant for baryon acoustic oscillations (BAO). Our findings are (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/N) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z=1 and 0, respectively. Read More

Gravitational-wave detectors have been well developed and operated with high sensitivity. However, they still suffer from mirror displacement noise. In this paper, we propose a resonant speed meter, as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. Read More

Affiliations: 1Ochanomizu University, Tokyo, Japan, 2National Astronomical Observatory of Japan, Tokyo, Japan, 3National Astronomical Observatory of Japan, Tokyo, Japan, 4National Astronomical Observatory of Japan, Tokyo, Japan, 5LIGO Laboratory, California Institute of Technology, CA, USA, 6University of Tokyo, Japan, 7Kyoto University, Kyoto, Japan, 8National Astronomical Observatory of Japan, Tokyo, Japan, 9Max-Planck-Institut fuer Gravitationsphysik, Potsdam, Germany, 10Ochanomizu University, Tokyo, Japan, 11National Astronomical Observatory of Japan, Tokyo, Japan

Some next-generation gravitational-wave detectors, such as the American Advanced LIGO project and the Japanese LCGT project, plan to use power recycled resonant sideband extraction (RSE) interferometers for their interferometer's optical configuration. A power recycled zero-detuning (PRZD) RSE interferometer, which is the default design for LCGT, has five main length degrees of freedom that need to be controlled in order to operate a gravitational-wave detector. This task is expected to be very challenging because of the complexity of optical configuration. Read More