Antti Solonen

Antti Solonen
Are you Antti Solonen?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Antti Solonen
Affiliation
Location

Pubs By Year

Pub Categories

 
Statistics - Computation (4)
 
Statistics - Methodology (3)
 
Mathematics - Numerical Analysis (2)
 
Mathematics - Probability (1)

Publications Authored By Antti Solonen

Prior distributions for Bayesian inference that rely on the $l_1$-norm of the parameters are of considerable interest, in part because they promote parameter fields with less regularity than Gaussian priors (e.g., discontinuities and blockiness). Read More

A priori dimension reduction is a widely adopted technique for reducing the computational complexity of stationary inverse problems. In this setting, the solution of an inverse problem is parameterized by a low-dimensional basis that is often obtained from the truncated Karhunen-Loeve expansion of the prior distribution. For high-dimensional inverse problems equipped with smoothing priors, this technique can lead to drastic reductions in parameter dimension and significant computational savings. Read More

In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. Read More

The intrinsic dimensionality of an inverse problem is affected by prior information, the accuracy and number of observations, and the smoothing properties of the forward operator. From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively low-dimensional subspace of the parameter space. We present a dimension reduction approach that defines and identifies such a subspace, called the "likelihood-informed subspace" (LIS), by characterizing the relative influences of the prior and the likelihood over the support of the posterior distribution. Read More