Anthony Horton - Institute of Astronomy, Cambridge

Anthony Horton
Are you Anthony Horton?

Claim your profile, edit publications, add additional information:

Contact Details

Anthony Horton
Institute of Astronomy, Cambridge
United Kingdom

Pubs By Year

Pub Categories

Instrumentation and Methods for Astrophysics (9)
Astrophysics (3)
Cosmology and Nongalactic Astrophysics (1)
Astrophysics of Galaxies (1)
Physics - Physics and Society (1)

Publications Authored By Anthony Horton

Authors: Demitri Muna, Michael Alexander, Alice Allen, Richard Ashley, Daniel Asmus, Ruyman Azzollini, Michele Bannister, Rachael Beaton, Andrew Benson, G. Bruce Berriman, Maciej Bilicki, Peter Boyce, Joanna Bridge, Jan Cami, Eryn Cangi, Xian Chen, Nicholas Christiny, Christopher Clark, Michelle Collins, Johan Comparat, Neil Cook, Darren Croton, Isak Delberth Davids, Éric Depagne, John Donor, Leonardo A. dos Santos, Stephanie Douglas, Alan Du, Meredith Durbin, Dawn Erb, Daniel Faes, J. G. Fernández-Trincado, Anthony Foley, Sotiria Fotopoulou, Søren Frimann, Peter Frinchaboy, Rafael Garcia-Dias, Artur Gawryszczak, Elizabeth George, Sebastian Gonzalez, Karl Gordon, Nicholas Gorgone, Catherine Gosmeyer, Katie Grasha, Perry Greenfield, Rebekka Grellmann, James Guillochon, Mark Gurwell, Marcel Haas, Alex Hagen, Daryl Haggard, Tim Haines, Patrick Hall, Wojciech Hellwing, Edmund Christian Herenz, Samuel Hinton, Renee Hlozek, John Hoffman, Derek Holman, Benne Willem Holwerda, Anthony Horton, Cameron Hummels, Daniel Jacobs, Jens Juel Jensen, David Jones, Arna Karick, Luke Kelley, Matthew Kenworthy, Ben Kitchener, Dominik Klaes, Saul Kohn, Piotr Konorski, Coleman Krawczyk, Kyler Kuehn, Teet Kuutma, Michael T. Lam, Richard Lane, Jochen Liske, Diego Lopez-Camara, Katherine Mack, Sam Mangham, Qingqing Mao, David J. E. Marsh, Cecilia Mateu, Loïc Maurin, James McCormac, Ivelina Momcheva, Hektor Monteiro, Michael Mueller, Roberto Munoz, Rohan Naidu, Nicholas Nelson, Christian Nitschelm, Chris North, Juan Nunez-Iglesias, Sara Ogaz, Russell Owen, John Parejko, Vera Patrício, Joshua Pepper, Marshall Perrin, Timothy Pickering, Jennifer Piscionere, Richard Pogge, Radek Poleski, Alkistis Pourtsidou, Adrian M. Price-Whelan, Meredith L. Rawls, Shaun Read, Glen Rees, Hanno Rein, Thomas Rice, Signe Riemer-Sørensen, Naum Rusomarov, Sebastian F. Sanchez, Miguel Santander-García, Gal Sarid, William Schoenell, Aleks Scholz, Robert L. Schuhmann, William Schuster, Peter Scicluna, Marja Seidel, Lijing Shao, Pranav Sharma, Aleksandar Shulevski, David Shupe, Cristóbal Sifón, Brooke Simmons, Manodeep Sinha, Ian Skillen, Bjoern Soergel, Thomas Spriggs, Sundar Srinivasan, Abigail Stevens, Ole Streicher, Eric Suchyta, Joshua Tan, O. Grace Telford, Romain Thomas, Chiara Tonini, Grant Tremblay, Sarah Tuttle, Tanya Urrutia, Sam Vaughan, Miguel Verdugo, Alexander Wagner, Josh Walawender, Andrew Wetzel, Kyle Willett, Peter K. G. Williams, Guang Yang, Guangtun Zhu, Andrea Zonca

The Astropy Project ( is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Read More

The Australian Space Eye is a proposed astronomical telescope based on a 6U CubeSat platform. The Space Eye will exploit the low level of systematic errors achievable with a small space based telescope to enable high accuracy measurements of the optical extragalactic background light and low surface brightness emission around nearby galaxies. This project is also a demonstrator for several technologies with general applicability to astronomical observations from nanosatellites. Read More

PRAXIS is a second generation instrument that follows on from GNOSIS, which was the first instrument using fibre Bragg gratings for OH background suppression. The Bragg gratings reflect the NIR OH lines while being transparent to light between the lines. This gives a much higher signal-noise ratio at low resolution but also at higher resolutions by removing the scattered wings of the OH lines. Read More

Photonic lanterns are an important enabling technology for astrophotonics with a wide range of potential applications including fibre Bragg grating OH suppression, integrated photonic spectrographs and fibre scramblers for high resolution spectroscopy. The behaviour of photonic lanterns differs in several important respects from the conventional fibre systems more frequently used in astronomical instruments and a detailed understanding of this behaviour is required in order to make the most effective use of this promising technology. To this end we have undertaken a laboratory study of photonic lanterns with the aim of developing an empirical model for the mapping from input to output illumination distributions. Read More

Fibre Bragg grating (FBG) OH suppression is capable of greatly reducing the bright sky background seen by near infrared spectrographs. By filtering out the airglow emission lines at high resolution before the light enters the spectrograph this technique prevents scattering from the emission lines into interline regions, thereby reducing the background at all wavelengths. In order to take full advantage of this sky background reduction the spectrograph must have very low instrumental backgrounds so that it remains sky noise limited. Read More

CYCLOPS2 is an upgrade for the UCLES high resolution spectrograph on the Anglo-Australian Telescope, scheduled for commissioning in semester 2012A. By replacing the 5 mirror Coud\'e train with a Cassegrain mounted fibre-based image slicer CYCLOPS2 simultaneously provides improved throughput, reduced aperture losses and increased spectral resolution. Sixteen optical fibres collect light from a 5. Read More

We analyse the near-infrared interline sky background, OH and O2 emission in 19 hours of H band observations with the GNOSIS OH suppression unit and the IRIS2 spectrograph at the 3.9-m AAT. We find that the temporal behaviour of OH emission is best described by a gradual decrease during the first half of the night followed by a gradual increase during the second half of the night following the behaviour of the solar elevation angle. Read More

We present the first scientific results from the Sydney-AAO Multi-Object IFS (SAMI) at the Anglo-Australian Telescope. This unique instrument deploys 13 fused fibre bundles (hexabundles) across a one-degree field of view allowing simultaneous spatially-resolved spectroscopy of 13 galaxies. During the first SAMI commissioning run, targeting a single galaxy field, one object (ESO 185-G031) was found to have extended minor axis emission with ionisation and kinematic properties consistent with a large-scale galactic wind. Read More

Affiliations: 1University of Sydney, 2Australian Astronomical Observatory, 3University of Sydney, 4University of Sydney, 5University of Sydney, 6University of Sydney, 7Australian Astronomical Observatory, 8Australian Astronomical Observatory, 9Australian Astronomical Observatory, 10Australian Astronomical Observatory, 11Monash University, 12Australian Astronomical Observatory, 13Australian Astronomical Observatory, 14Australian Astronomical Observatory, 15Australian Astronomical Observatory, 16Australian Astronomical Observatory, 17Australian Astronomical Observatory, 18Australian Astronomical Observatory, 19Australian Astronomical Observatory, 20University of Sydney, 21University of Sydney, 22Australian Astronomical Observatory, 23University of Sydney, 24University of Sydney, 25University of Sydney

We demonstrate a novel technology that combines the power of the multi-object spectrograph with the spatial multiplex advantage of an integral field spectrograph (IFS). The Sydney-AAO Multi-object IFS (SAMI) is a prototype wide-field system at the Anglo-Australian Telescope (AAT) that allows 13 imaging fibre bundles ("hexabundles") to be deployed over a 1-degree diameter field of view. Each hexabundle comprises 61 lightly-fused multimode fibres with reduced cladding and yields a 75 percent filling factor. Read More

Affiliations: 1Anglo-Australian Observatory, 2Anglo-Australian Observatory
Category: Astrophysics

The burgeoning field of astrophotonics explores the interface between astronomy and photonics. Important applications include photonic OH suppression at near-infrared wavelengths, and integrated photonic spectroscopy. These new photonic mechanisms are not well matched to conventional multi-mode fibres and are best fed with single or few-mode fibres. Read More

Affiliations: 1Institute of Astronomy, Cambridge, 2Institute of Astronomy, Cambridge, 3Anglo-Australian Observatory, 4Anglo-Australian Observatory, 5Institute of Astronomy, Cambridge, 6Institute of Astronomy, Cambridge, 7Institute of Astronomy, Cambridge
Category: Astrophysics

DAzLE is an near infrared narrowband differential imager being built by the Institute of Astronomy, Cambridge, in collaboration with the Anglo-Australian observatory. It is a special purpose instrument designed with a sole aim; the detection of redshifted Lyman-alpha emission from star forming galaxies at z>7. DAzLE will use pairs of high resolution (R=1000) narrowband filters to exploit low background `windows' in the near infrared sky emission spectrum. Read More

The Cambridge Infra-red Panoramic Survey Spectrograph (CIRPASS) is described. This near-infrared (NIR) spectrograph has been used on the 8m Gemini-South Telescope, the 3.9m Anglo-Australian Telescope (AAT) and the 4. Read More