Andrew D. Bagdanov

Andrew D. Bagdanov
Are you Andrew D. Bagdanov?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Andrew D. Bagdanov
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (6)

Publications Authored By Andrew D. Bagdanov

Text Proposals have emerged as a class-dependent version of object proposals - efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text recognition. In this paper we propose an improvement over the original Text Proposals algorithm of Gomez and Karatzas (2016), combining it with Fully Convolutional Networks to improve the ranking of proposals. Read More

This paper proposes a novel method to optimize bandwidth usage for object detection in critical communication scenarios. We develop two operating models of active information seeking. The first model identifies promising regions in low resolution imagery and progressively requests higher resolution regions on which to perform recognition of higher semantic quality. Read More

Most approaches to human attribute and action recognition in still images are based on image representation in which multi-scale local features are pooled across scale into a single, scale-invariant encoding. Both in bag-of-words and the recently popular representations based on convolutional neural networks, local features are computed at multiple scales. However, these multi-scale convolutional features are pooled into a single scale-invariant representation. Read More

Object detection with deep neural networks is often performed by passing a few thousand candidate bounding boxes through a deep neural network for each image. These bounding boxes are highly correlated since they originate from the same image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which is subsequently applied to all bounding boxes. Read More

In this paper we introduce a script identification method based on hand-crafted texture features and an artificial neural network. The proposed pipeline achieves near state-of-the-art performance for script identification of video-text and state-of-the-art performance on visual language identification of handwritten text. More than using the deep network as a classifier, the use of its intermediary activations as a learned metric demonstrates remarkable results and allows the use of discriminative models on unknown classes. Read More

In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Read More