Andreas W. Schell

Andreas W. Schell
Are you Andreas W. Schell?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Andreas W. Schell
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Optics (13)
 
Quantum Physics (9)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (7)

Publications Authored By Andreas W. Schell

Realization of integrated photonic circuits on a single chip requires controlled manipulation and integration of solid-state quantum emitters with nanophotonic components. Previous works focused on emitters embedded in a three-dimensional crystals -- such as nanodiamonds or quantum dots. In contrast, in this work we demonstrate coupling of a single emitter in a two-dimensional (2D) material, namely hexagonal boron nitride (hBN), with a tapered optical fiber and find a collection efficiency of the system is found to be 10~\%. Read More

Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Read More

Arrays of fluorescent nanoparticles are highly sought after for applications in sensing and nanophotonics. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. Read More

Solid-state microcavities combining ultra-small mode volume, wide-range resonance frequency tuning, as well as lossless coupling to a single mode fibre are integral tools for nanophotonics and quantum networks. We developed an integrated system providing all of these three indispensable properties. It consists of a nanofibre Bragg cavity (NFBC) with the mode volume of under 1 micro cubic meter and repeatable tuning capability over more than 20 nm at visible wavelengths. Read More

Tremendous enhancement of light-matter interaction in plasmon-excited molecular hybrid devices allows for non-linearities on the level of single emitters and few photons. This promises a plethora of novel applications like single photon transistors. Nevertheless, building the components of such devices is technologically extremely challenging. Read More

We report the realization of a device based on a single Nitrogen-vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and output are directly fiber-coupled and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. Read More

A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical FDTD simulations we determine a lower and upper bound for the coupling efficiency of (9. Read More

Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale which enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. Read More

A fully integrated quantum optical technology requires active quantum systems incorporated into resonant optical microstructures and inter-connected in three dimensions via photonic wires. Nitrogen vacancy-centres (NV-centres) in diamond which are excellent photostable room temperature single-photon emitters are ideal candidates for that purpose. Extensive research efforts to couple NV-centres to photonic structures such as optical microresonators, microcavities, and waveguides have been pursued. Read More

Spectral diffusion is the phenomenon of random jumps in the emission wavelength of narrow lines. This phenomenon is a major hurdle for applications of solid state quantum emitters like quantum dots, molecules or diamond defect centers in an integrated quantum optical technology. Here, we provide further insight into the underlying processes of spectral diffusion of the zero phonon line of single nitrogen vacancy centers in nanodiamonds by using a novel method based on photon correlation interferometry. Read More

In this paper we study thermo-optical effects in gallium phosphite photonic crystal cavities in the visible. By measuring the shift of narrow resonances we derive the temperature dependency of the local refractive index of gallium phosphide in attoliter volumina over a temperature range between 5 K and 300 K at a wavelength of about 605 nm. Additionally, the potential of photonic crystal cavities for thermo-optical switching of visible light is investigated. Read More

Integrated quantum optical hybrid devices consist of fundamental constituents such as single emitters and tailored photonic nanostructures. A reliable fabrication method requires the controlled deposition of active nanoparticles on arbitrary nanostructures with highest precision. Here, we describe an easily adaptable technique that employs picking and placing of nanoparticles with an atomic force microscope combined with a confocal setup. Read More

We present two applications of a single nitrogen vacancy center in a nanodiamond as quantum probe for plasmonic nanostructures. Coupling to the nanostructures is achieved in a highly controlled manner by picking up a pre-characterized nanocrystal with an atomic force microscope and placing it at the desired position. Local launching of single excitations into a nanowire with a spatial control of few nanometers is demonstrated. Read More

Using a nanomanipulation technique a nanodiamond with a single nitrogen vacancy center is placed directly on the surface of a gallium phosphide photonic crystal cavity. A Purcell-enhancement of the fluorescence emission at the zero phonon line (ZPL) by a factor of 12.1 is observed. Read More