Anca D. Dragan

Anca D. Dragan
Are you Anca D. Dragan?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Anca D. Dragan
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Robotics (3)
 
Computer Science - Artificial Intelligence (2)
 
Computer Science - Learning (2)

Publications Authored By Anca D. Dragan

Our ultimate goal is to efficiently enable end-users to correctly anticipate a robot's behavior in novel situations. This behavior is often a direct result of the robot's underlying objective function. Our insight is that end-users need to have an accurate mental model of this objective function in order to understand and predict what the robot will do. Read More

It is clear that one of the primary tools we can use to mitigate the potential risk from a misbehaving AI system is the ability to turn the system off. As the capabilities of AI systems improve, it is important to ensure that such systems do not adopt subgoals that prevent a human from switching them off. This is a challenge because many formulations of rational agents create strong incentives for self-preservation. Read More

Motivated by recent advances in Deep Learning for robot control, this paper considers two learning algorithms in terms of how they acquire demonstrations. "Human-Centric" (HC) sampling is the standard supervised learning algorithm, where a human supervisor demonstrates the task by teleoperating the robot to provide trajectories consisting of state-control pairs. "Robot-Centric" (RC) sampling is an increasingly popular alternative used in algorithms such as DAgger, where a human supervisor observes the robot executing a learned policy and provides corrective control labels for each state visited. Read More

For an autonomous system to be helpful to humans and to pose no unwarranted risks, it needs to align its values with those of the humans in its environment in such a way that its actions contribute to the maximization of value for the humans. We propose a formal definition of the value alignment problem as cooperative inverse reinforcement learning (CIRL). A CIRL problem is a cooperative, partial-information game with two agents, human and robot; both are rewarded according to the human's reward function, but the robot does not initially know what this is. Read More

We introduce a functional gradient descent trajectory optimization algorithm for robot motion planning in Reproducing Kernel Hilbert Spaces (RKHSs). Functional gradient algorithms are a popular choice for motion planning in complex many-degree-of-freedom robots, since they (in theory) work by directly optimizing within a space of continuous trajectories to avoid obstacles while maintaining geometric properties such as smoothness. However, in practice, functional gradient algorithms typically commit to a fixed, finite parameterization of trajectories, often as a list of waypoints. Read More