# Ali Sili - DP, LATP

## Publications Authored By Ali Sili

We first consider an elastic thin heterogeneous cylinder of radius of order epsilon: the interior of the cylinder is occupied by a stiff material (fiber) that is surrounded by a soft material (matrix). By assuming that the elasticity tensor of the fiber does not scale with epsilon and that of the matrix scales with epsilon square, we prove that the one dimensional model is a nonlocal system. We then consider a reference configuration domain filled out by periodically distributed rods similar to those described above. Read More

**Affiliations:**

^{1}DP, LATP,

^{2}DP, LATP

**Category:**Mathematics - Analysis of PDEs

We consider a thin multidomain of $R^N$, N>1, consisting of two vertical cylinders, one placed upon the other: the first one with given height and small cross section, the second one with small thickness and given cross section. In this multidomain we study the asymptotic behavior, when the volumes of the two cylinders vanish, of a Laplacian eigenvalue problem and of a $L^2$-Hilbert orthonormal basis of eigenvectors. We derive the limit eigenvalue problem (which is well posed in the union of the limit domains, with respective dimension 1 and N-1) and the limit basis. Read More

We consider the linearized elasticity system in a multidomain of the three dimensional space. This multidomain is the union of a horizontal plate, with fixed cross section and small thickness "h", and of a vertical beam with fixed height and small cross section of radius "r". The lateral boundary of the plate and the top of the beam are assumed to be clamped. Read More