Alexei P. Sokolov

Alexei P. Sokolov
Are you Alexei P. Sokolov?

Claim your profile, edit publications, add additional information:

Contact Details

Alexei P. Sokolov

Pubs By Year

Pub Categories

Physics - Soft Condensed Matter (2)
Physics - Optics (2)
Quantum Physics (1)
Physics - Chemical Physics (1)
Physics - Mesoscopic Systems and Quantum Hall Effect (1)
Physics - Materials Science (1)

Publications Authored By Alexei P. Sokolov

One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in mono-alcohols. Read More

Two-dimensional (2D) materials beyond graphene such as transition metal dichalcogenides (TMDs) have unique mechanical, optical and electronic properties with promising applications in flexible devices, catalysis and sensing. Optical imaging of TMDs using photoluminescence and Raman spectroscopy can reveal the effects of structure, strain, doping, defects, edge states, grain boundaries and surface functionalization. However, Raman signals are inherently weak and so far have been limited in spatial resolution in TMDs to a few hundred nanometres which is much larger than the intrinsic scale of these effects. Read More

The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no 'glassy' layer, but the alpha relaxation time near the nanoparticle grows with cooling faster than the alpha relaxation time in the bulk, and is ~ 20 times longer at low temperatures. The interfacial layer thickness increases from ~ 1. Read More

Coherent anti-Stokes Raman scattering (CARS) and, in particular, femtosecond adaptive spectroscopic techniques (FAST CARS) have been successfully used for molecular spectroscopy and microscopic imaging. Recent progress in ultrafast nanooptics provides flexibility in generation and control of optical near fields, and holds promise to extend CARS techniques to the nanoscale. In this theoretical study, we demonstrate ultrafast subwavelentgh control of coherent Raman spectra of molecules in the vicinity of a plasmonic nanostructure excited by ultrashort laser pulses. Read More

We study the possibility of creating spatial patterns having subwavelength size by using the so-called dark states formed by the interaction between atoms and optical fields. These optical fields have a specified spatial distribution. Our experiments in Rb vapor display spatial patterns that are smaller than the length determined by the diffraction limit of the optical system used in the experiment. Read More