Alessio Spantini

Alessio Spantini
Are you Alessio Spantini?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Alessio Spantini
Affiliation
Location

Pubs By Year

Pub Categories

 
Statistics - Methodology (5)
 
Statistics - Computation (5)
 
Mathematics - Numerical Analysis (3)
 
Mathematics - Probability (1)
 
Statistics - Machine Learning (1)

Publications Authored By Alessio Spantini

Integration against an intractable probability measure is among the fundamental challenges of statistical inference, particularly in the Bayesian setting. A principled approach to this problem seeks a deterministic coupling of the measure of interest with a tractable "reference" measure (e.g. Read More

We propose optimal dimensionality reduction techniques for the solution of goal-oriented linear-Gaussian inverse problems, where the quantity of interest (QoI) is a function of the inversion parameters. These approximations are suitable for large-scale applications. In particular, we study the approximation of the posterior covariance of the QoI as a low-rank negative update of its prior covariance, and prove optimality of this update with respect to the natural geodesic distance on the manifold of symmetric positive definite matrices. Read More

We present the fundamentals of a measure transport approach to sampling. The idea is to construct a deterministic coupling---i.e. Read More

In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. Read More

The intrinsic dimensionality of an inverse problem is affected by prior information, the accuracy and number of observations, and the smoothing properties of the forward operator. From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively low-dimensional subspace of the parameter space. We present a dimension reduction approach that defines and identifies such a subspace, called the "likelihood-informed subspace" (LIS), by characterizing the relative influences of the prior and the likelihood over the support of the posterior distribution. Read More