Alessandro Rozza

Alessandro Rozza
Are you Alessandro Rozza?

Claim your profile, edit publications, add additional information:

Contact Details

Alessandro Rozza

Pubs By Year

Pub Categories

Computer Science - Learning (5)
Statistics - Machine Learning (3)
Physics - Physics and Society (1)

Publications Authored By Alessandro Rozza

Many different classification tasks need to manage structured data, which are usually modeled as graphs. Moreover, these graphs can be dynamic, meaning that the vertices/edges of each graph may change during time. Our goal is to jointly exploit structured data and temporal information through the use of a neural network model. Read More

We present a theoretically grounded approach to train deep neural networks, including recurrent networks, subject to class-dependent label noise. We propose two procedures for loss correction that are agnostic to both application domain and network architecture. They simply amount to at most a matrix inversion and multiplication, provided that we know the probability of each class being corrupted into another. Read More

From a machine learning point of view to identify a subset of relevant features from a real data set can be useful to improve the results achieved by classification methods and to reduce their time and space complexity. To achieve this goal, feature selection methods are usually employed. These approaches assume that the data contains redundant or irrelevant attributes that can be eliminated. Read More

In our work we analyse the political disaffection or "the subjective feeling of powerlessness, cynicism, and lack of confidence in the political process, politicians, and democratic institutions, but with no questioning of the political regime" by exploiting Twitter data through machine learning techniques. In order to validate the quality of the time-series generated by the Twitter data, we highlight the relations of these data with political disaffection as measured by means of public opinion surveys. Moreover, we show that important political news of Italian newspapers are often correlated with the highest peaks of the produced time-series. Read More

In the last decades the estimation of the intrinsic dimensionality of a dataset has gained considerable importance. Despite the great deal of research work devoted to this task, most of the proposed solutions prove to be unreliable when the intrinsic dimensionality of the input dataset is high and the manifold where the points lie is nonlinearly embedded in a higher dimensional space. In this paper we propose a novel robust intrinsic dimensionality estimator that exploits the twofold complementary information conveyed both by the normalized nearest neighbor distances and by the angles computed on couples of neighboring points, providing also closed-forms for the Kullback-Leibler divergences of the respective distributions. Read More