A. Variola - LAL, Orsay, F

A. Variola
Are you A. Variola?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Variola
Affiliation
LAL, Orsay, F
Location

Pubs By Year

External Links

Pub Categories

 
Physics - Accelerator Physics (16)
 
High Energy Physics - Experiment (16)
 
Nuclear Experiment (6)
 
Physics - Instrumentation and Detectors (5)
 
Physics - Plasma Physics (2)
 
Physics - General Physics (1)
 
Physics - Optics (1)
 
High Energy Physics - Phenomenology (1)

Publications Authored By A. Variola

The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82\% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. Read More

A new versatile facility LEETECH for detector R&D, tests and calibration is designed and constructed. It uses electrons produced by the photoinjector PHIL at LAL, Orsay and provides a powerful tool for wide range R&D studies of different detector concepts delivering "mono-chromatic" samples of low energy electrons with adjustable energy and intensity. Among other innovative instrumentation techniques, LEETECH will be used for testing various gaseous tracking detectors and studying new Micromegas/InGrid concept which has very promising characteristics of spatial resolution and can be a good candidate for particle tracking and identification. Read More

As part of the R\&D for the 50 MeV ThomX Compton source project, we have studied the effect of several beam dynamics processes on the evolution of the beam in the ring. The processes studied include among others Compton scattering, intrabeam scattering, coherent synchrotron radiation. We have performed extensive simulations of a full injection/extraction cycle (400000 turns). Read More

The machine described in this document is an advanced Source of up to 20 MeV Gamma Rays based on Compton back-scattering, i.e. collision of an intense high power laser beam and a high brightness electron beam with maximum kinetic energy of about 720 MeV. Read More

Positron sources are critical components of the future linear collider projects. This is essentially due to the high luminosity required, orders of magnitude higher than existing ones. In addition, polarization of the positron beam rather expands the physics research potential of the machine. Read More

Gamma sources with high flux and spectral densities are the main requirements for new nuclear physics experiments to be performed in several worldwide laboratories and envisaged in the ELI-NP (Extreme Light Infrastructure-Nuclear Physics) project or in the IRIDE (Interdisciplinary Research Infrastructure with Dual Electron Linacs) proposals. The paper is focalized on an experiment of gamma photons production using Compton collisions between the DA\Phi NE electron beam and a high average power laser pulse, amplified in a Fabry-P\'erot optical resonator. The calculations show that the resulting gamma beam source has extremely interesting properties in terms of spectral density, energy spread and gamma flux comparable (and even better) with the last generation gamma sources. Read More

In a conventional positron source driven by a few GeV electron beam, a high amount of heat is loaded into a positron converter target to generate intense positrons required by linear colliders, and which would eventually damage the converter target. A hybrid target, composed of a single crystal target as a radiator of intense gamma--rays, and an amorphous converter target placed downstream of the crystal, was proposed as a scheme which could overcome the problem.This paper describes the development of an intense positron source with the hybrid target. Read More

2013Jun
Authors: SuperB Collaboration, M. Baszczyk, P. Dorosz, J. Kolodziej, W. Kucewicz, M. Sapor, A. Jeremie, E. Grauges Pous, G. E. Bruno, G. De Robertis, D. Diacono, G. Donvito, P. Fusco, F. Gargano, F. Giordano, F. Loddo, F. Loparco, G. P. Maggi, V. Manzari, M. N. Mazziotta, E. Nappi, A. Palano, B. Santeramo, I. Sgura, L. Silvestris, V. Spinoso, G. Eigen, J. Zalieckas, Z. Zhuo, L. Jenkovszky, G. Balbi, M. Boldini, D. Bonacorsi, V. Cafaro, I. D'Antone, G. M. Dallavalle, R. Di Sipio, F. Fabbri, L. Fabbri, A. Gabrielli, D. Galli, P. Giacomelli, V. Giordano, F. M. Giorgi, C. Grandi, I. Lax, S. Lo Meo, U. Marconi, A. Montanari, G. Pellegrini, M. Piccinini, T. Rovelli, N. Semprini Cesari, G. Torromeo, N. Tosi, R. Travaglini, V. M. Vagnoni, S. Valentinetti, M. Villa, A. Zoccoli, J. -F. Caron, C. Hearty, P. F. -T. Lu, T. S. Mattison, J. A. McKenna, R. Y. -C. So, M. Yu. Barnyakov, V. E. Blinov, A. A. Botov, V. P. Druzhinin, V. B. Golubev, S. A. Kononov, E. A. Kravchenko, E. B. Levichev, A. P. Onuchin, S. I. Serednyakov, D. A. Shtol, Y. I. Skovpen, E. P. Solodov, A. Cardini, M. Carpinelli, D. S. -T. Chao, C. H. Cheng, D. A. Doll, B. Echenard, K. Flood, J. Hanson, D. G. Hitlin, P. Ongmongkolkul, F. C. Porter, R. Y. Zhu, N. Randazzo, E. De La Cruz Burelo, Y. Zheng, P. Campos, M. De Silva, A. Kathirgamaraju, B. Meadows, B. Pushpawela, Y. Shi, M. Sokoloff, G. Lopez Castro, V. Ciaschini, P. Franchini, F. Giacomini, A. Paolini, G. A. Calderon Polania, S. Laczek, P. Romanowicz, B. Szybinski, M. Czuchry, L. Flis, D. Harezlak, J. Kocot, M. Radecki, M. Sterzel, T. Szepieniec, T. Szymocha, P. Wójcik, M. Andreotti, W. Baldini, R. Calabrese, V. Carassiti, G. Cibinetto, A. Cotta Ramusino, F. Evangelisti, A. Gianoli, E. Luppi, R. Malaguti, M. Manzali, M. Melchiorri, M. Munerato, C. Padoan, V. Santoro, L. Tomassetti, M. M. Beretta, M. Biagini, M. Boscolo, E. Capitolo, R. de Sangro, M. Esposito, G. Felici, G. Finocchiaro, M. Gatta, C. Gatti, S. Guiducci, S. Lauciani, P. Patteri, I. Peruzzi, M. Piccolo, P. Raimondi, M. Rama, C. Sanelli, S. Tomassini, P. Fabbricatore, D. Delepine, M. A. Reyes Santos, M. Chrzaszcz, R. Grzymkowski, P. Knap, J. Kotula, T. Lesiak, J. Ludwin, J. Michalowski, B. Pawlik, B. Rachwal, M. Stodulski, J. Wiechczynski, M. Witek, L. Zawiejski, M. Zdybal, V. Y. Aushev, A. Ustynov, N. Arnaud, P. Bambade, C. Beigbeder, F. Bogard, M. Borsato, D. Breton, J. Brossard, L. Burmistrov, D. Charlet, V. Chaumat, O. Dadoun, M. El Berni, J. Maalmi, V. Puill, C. Rimbault, A. Stocchi, V. Tocut, A. Variola, S. Wallon, G. Wormser, F. Grancagnolo, E. Ben-Haim, S. Sitt, M. Baylac, O. Bourrion, J. -M. Deconto, Y. Gomez Martinez, N. Monseu, J. -F. Muraz, J. -S. Real, C. Vescovi, R. Cenci, A. Jawahery, D. Roberts, E. W. Twedt, R. Cheaib, D. Lindemann, S. Nderitu, P. Patel, S. H. Robertson, D. Swersky, A. Warburton, E. Cuautle Flores, G. Toledo Sanchez, P. Biassoni, L. Bombelli, M. Citterio, S. Coelli, C. Fiorini, V. Liberali, M. Monti, B. Nasri, N. Neri, F. Palombo, F. Sabatini, A. Stabile, A. Berra, A. Giachero, C. Gotti, D. Lietti, M. Maino, G. Pessina, M. Prest, J. -P. Martin, M. Simard, N. Starinski, P. Taras, A. Drutskoy, S. Makarychev, A. V. Nefediev, A. Aloisio, S. Cavaliere, G. De Nardo, M. Della Pietra, A. Doria, R. Giordano, A. Ordine, S. Pardi, G. Russo, C. Sciacca, I. I. Bigi, C. P. Jessop, W. Wang, M. Bellato, M. Benettoni, M. Corvo, A. Crescente, F. Dal Corso, U. Dosselli, C. Fanin, A. Gianelle, S. Longo, M. Michelotto, F. Montecassiano, M. Morandin, R. Pengo, M. Posocco, M. Rotondo, G. Simi, R. Stroili, L. Gaioni, A. Manazza, M. Manghisoni, L. Ratti, V. Re, G. Traversi, S. Zucca, S. Bizzaglia, M. Bizzarri, C. Cecchi, S. Germani, M. Lebeau, P. Lubrano, E. Manoni, A. Papi, A. Rossi, G. Scolieri, G. Batignani, S. Bettarini, G. Casarosa, A. Cervelli, A. Fella, F. Forti, M. Giorgi, L. Lilli, A. Lusiani, B. Oberhof, A. Paladino, F. Pantaleo, E. Paoloni, A. L. Perez Perez, G. Rizzo, J. Walsh, A. Fernández Téllez, G. Beck, M. Berman, A. Bevan, F. Gannaway, G. Inguglia, A. J. Martin, J. Morris, V. Bocci, M. Capodiferro, G. Chiodi, I. Dafinei, N. V. Drenska, R. Faccini, F. Ferroni, C. Gargiulo, P. Gauzzi, C. Luci, R. Lunadei, G. Martellotti, F. Pellegrino, V. Pettinacci, D. Pinci, L. Recchia, D. Ruggeri, A. Zullo, P. Camarri, R. Cardarelli, C. De Santis, A. Di Ciaccio, V. Di Felice, F. Di Palma, A. Di Simone, L. Marcelli, R. Messi, D. Moricciani, R. Sparvoli, S. Tammaro, P. Branchini, A. Budano, S. Bussino, M. Ciuchini, F. Nguyen, A. Passeri, F. Ruggieri, E. Spiriti, F. Wilson, I. Leon Monzon, J. R. Millan-Almaraz, P. L. M. Podesta-Lerma, D. Aston, B. Dey, A. Fisher, P. D. Jackson, D. W. G. S. Leith, S. Luitz, D. MacFarlane, M. McCulloch, S. Metcalfe, A. Novokhatski, S. Osier, R. Prepost, B. Ratcliff, J. Seeman, M. Sullivan, J. Va'vra, U. Wienands, W. Wisniewski, B. D. Altschul, M. V. Purohit, J. Baudot, I. Ripp-Baudot, G. A. P. Cirrone, G. Cuttone, O. Bezshyyko, G. Dolinska, A. Soffer, F. Bianchi, F. De Mori, A. Filippi, D. Gamba, S. Marcello, M. Bomben, L. Bosisio, P. Cristaudo, L. Lanceri, B. Liberti, I. Rashevskaya, C. Stella, E. S. Vallazza, L. Vitale, G. Auriemma, C. Satriano, F. Martinez Vidal, J. Mazorra de Cos, A. Oyanguren, P. Ruiz Valls, A. Beaulieu, S. Dejong, J. Franta, M. J. Lewczuk, M. Roney, R. Sobie

In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati National Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. Read More

2012Nov
Authors: J. L. Abelleira Fernandez, C. Adolphsen, P. Adzic, A. N. Akay, H. Aksakal, J. L. Albacete, B. Allanach, S. Alekhin, P. Allport, V. Andreev, R. B. Appleby, E. Arikan, N. Armesto, G. Azuelos, M. Bai, D. Barber, J. Bartels, O. Behnke, J. Behr, A. S. Belyaev, I. Ben-Zvi, N. Bernard, S. Bertolucci, S. Bettoni, S. Biswal, J. Blümlein, H. Böttcher, A. Bogacz, C. Bracco, J. Bracinik, G. Brandt, H. Braun, S. Brodsky, O. Brüning, E. Bulyak, A. Buniatyan, H. Burkhardt, I. T. Cakir, O. Cakir, R. Calaga, A. Caldwell, V. Cetinkaya, V. Chekelian, E. Ciapala, R. Ciftci, A. K. Ciftci, B. A. Cole, J. C. Collins, O. Dadoun, J. Dainton, A. De. Roeck, D. d'Enterria, P. DiNezza, M. D'Onofrio, A. Dudarev, A. Eide, R. Enberg, E. Eroglu, K. J. Eskola, L. Favart, M. Fitterer, S. Forte, A. Gaddi, P. Gambino, H. García Morales, T. Gehrmann, P. Gladkikh, C. Glasman, A. Glazov, R. Godbole, B. Goddard, T. Greenshaw, A. Guffanti, V. Guzey, C. Gwenlan, T. Han, Y. Hao, F. Haug, W. Herr, A. Hervé, B. J. Holzer, M. Ishitsuka, M. Jacquet, B. Jeanneret, E. Jensen, J. M. Jimenez, J. M. Jowett, H. Jung, H. Karadeniz, D. Kayran, A. Kilic, K. Kimura, R. Klees, M. Klein, U. Klein, T. Kluge, F. Kocak, M. Korostelev, A. Kosmicki, P. Kostka, H. Kowalski, M. Kraemer, G. Kramer, D. Kuchler, M. Kuze, T. Lappi, P. Laycock, E. Levichev, S. Levonian, V. N. Litvinenko, A. Lombardi, J. Maeda, C. Marquet, B. Mellado, K. H. Mess, A. Milanese, J. G. Milhano, S. Moch, I. I. Morozov, Y. Muttoni, S. Myers, S. Nandi, Z. Nergiz, P. R. Newman, T. Omori, J. Osborne, E. Paoloni, Y. Papaphilippou, C. Pascaud, H. Paukkunen, E. Perez, T. Pieloni, E. Pilicer, B. Pire, R. Placakyte, A. Polini, V. Ptitsyn, Y. Pupkov, V. Radescu, S. Raychaudhuri, L. Rinolfi, E. Rizvi, R. Rohini, J. Rojo, S. Russenschuck, M. Sahin, C. A. Salgado, K. Sampei, R. Sassot, E. Sauvan, M. Schaefer, U. Schneekloth, T. Schörner-Sadenius, D. Schulte, A. Senol, A. Seryi, P. Sievers, A. N. Skrinsky, W. Smith, D. South, H. Spiesberger, A. M. Stasto, M. Strikman, M. Sullivan, S. Sultansoy, Y. P. Sun, B. Surrow, L. Szymanowski, P. Taels, I. Tapan, T. Tasci, E. Tassi, H. Ten. Kate, J. Terron, H. Thiesen, L. Thompson, P. Thompson, K. Tokushuku, R. Tomás García, D. Tommasini, D. Trbojevic, N. Tsoupas, J. Tuckmantel, S. Turkoz, T. N. Trinh, K. Tywoniuk, G. Unel, T. Ullrich, J. Urakawa, P. VanMechelen, A. Variola, R. Veness, A. Vivoli, P. Vobly, J. Wagner, R. Wallny, S. Wallon, G. Watt, C. Weiss, U. A. Wiedemann, U. Wienands, F. Willeke, B. -W. Xiao, V. Yakimenko, A. F. Zarnecki, Z. Zhang, F. Zimmermann, R. Zlebcik, F. Zomer

The present note relies on the recently published conceptual design report of the LHeC and extends the first contribution to the European strategy debate in emphasising the role of the LHeC to complement and complete the high luminosity LHC programme. The brief discussion therefore focuses on the importance of high precision PDF and $\alpha_s$ determinations for the physics beyond the Standard Model (GUTs, SUSY, Higgs). Emphasis is also given to the importance of high parton density phenomena in nuclei and their relevance to the heavy ion physics programme at the LHC. Read More

2012Nov
Authors: J. L. Abelleira Fernandez, C. Adolphsen, P. Adzic, A. N. Akay, H. Aksakal, J. L. Albacete, B. Allanach, S. Alekhin, P. Allport, V. Andreev, R. B. Appleby, E. Arikan, N. Armesto, G. Azuelos, M. Bai, D. Barber, J. Bartels, O. Behnke, J. Behr, A. S. Belyaev, I. Ben-Zvi, N. Bernard, S. Bertolucci, S. Bettoni, S. Biswal, J. Blümlein, H. Böttcher, A. Bogacz, C. Bracco, J. Bracinik, G. Brandt, H. Braun, S. Brodsky, O. Brüning, E. Bulyak, A. Buniatyan, H. Burkhardt, I. T. Cakir, O. Cakir, R. Calaga, A. Caldwell, V. Cetinkaya, V. Chekelian, E. Ciapala, R. Ciftci, A. K. Ciftci, B. A. Cole, J. C. Collins, O. Dadoun, J. Dainton, A. De. Roeck, D. d'Enterria, P. DiNezza, M. D'Onofrio, A. Dudarev, A. Eide, R. Enberg, E. Eroglu, K. J. Eskola, L. Favart, M. Fitterer, S. Forte, A. Gaddi, P. Gambino, H. García Morales, T. Gehrmann, P. Gladkikh, C. Glasman, A. Glazov, R. Godbole, B. Goddard, T. Greenshaw, A. Guffanti, V. Guzey, C. Gwenlan, T. Han, Y. Hao, F. Haug, W. Herr, A. Hervé, B. J. Holzer, M. Ishitsuka, M. Jacquet, B. Jeanneret, E. Jensen, J. M. Jimenez, J. M. Jowett, H. Jung, H. Karadeniz, D. Kayran, A. Kilic, K. Kimura, R. Klees, M. Klein, U. Klein, T. Kluge, F. Kocak, M. Korostelev, A. Kosmicki, P. Kostka, H. Kowalski, M. Kraemer, G. Kramer, D. Kuchler, M. Kuze, T. Lappi, P. Laycock, E. Levichev, S. Levonian, V. N. Litvinenko, A. Lombardi, J. Maeda, C. Marquet, B. Mellado, K. H. Mess, A. Milanese, J. G. Milhano, S. Moch, I. I. Morozov, Y. Muttoni, S. Myers, S. Nandi, Z. Nergiz, P. R. Newman, T. Omori, J. Osborne, E. Paoloni, Y. Papaphilippou, C. Pascaud, H. Paukkunen, E. Perez, T. Pieloni, E. Pilicer, B. Pire, R. Placakyte, A. Polini, V. Ptitsyn, Y. Pupkov, V. Radescu, S. Raychaudhuri, L. Rinolfi, E. Rizvi, R. Rohini, J. Rojo, S. Russenschuck, M. Sahin, C. A. Salgado, K. Sampei, R. Sassot, E. Sauvan, M. Schaefer, U. Schneekloth, T. Schörner-Sadenius, D. Schulte, A. Senol, A. Seryi, P. Sievers, A. N. Skrinsky, W. Smith, D. South, H. Spiesberger, A. M. Stasto, M. Strikman, M. Sullivan, S. Sultansoy, Y. P. Sun, B. Surrow, L. Szymanowski, P. Taels, I. Tapan, T. Tasci, E. Tassi, H. Ten. Kate, J. Terron, H. Thiesen, L. Thompson, P. Thompson, K. Tokushuku, R. Tomás García, D. Tommasini, D. Trbojevic, N. Tsoupas, J. Tuckmantel, S. Turkoz, T. N. Trinh, K. Tywoniuk, G. Unel, T. Ullrich, J. Urakawa, P. VanMechelen, A. Variola, R. Veness, A. Vivoli, P. Vobly, J. Wagner, R. Wallny, S. Wallon, G. Watt, C. Weiss, U. A. Wiedemann, U. Wienands, F. Willeke, B. -W. Xiao, V. Yakimenko, A. F. Zarnecki, Z. Zhang, F. Zimmermann, R. Zlebcik, F. Zomer

This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Read More

LAL is now equiped with its own platform for photoinjectors tests and Research and Developement, named PHIL (PHotoInjectors at LAL). This facility has two main purposes: push the limits of the photoinjectors performances working on both the design and the associated technology and provide a low energy (MeV) short pulses (ps) electron beam for the interested users. Another very important goal of this machine will be to provide an opportunity to form accelerator physics students, working in a high technology environment. Read More

2012Jun
Authors: J. L. Abelleira Fernandez, C. Adolphsen, A. N. Akay, H. Aksakal, J. L. Albacete, S. Alekhin, P. Allport, V. Andreev, R. B. Appleby, E. Arikan, N. Armesto, G. Azuelos, M. Bai, D. Barber, J. Bartels, O. Behnke, J. Behr, A. S. Belyaev, I. Ben-Zvi, N. Bernard, S. Bertolucci, S. Bettoni, S. Biswal, J. Blümlein, H. Böttcher, A. Bogacz, C. Bracco, G. Brandt, H. Braun, S. Brodsky, O. Brüning, E. Bulyak, A. Buniatyan, H. Burkhardt, I. T. Cakir, O. Cakir, R. Calaga, V. Cetinkaya, E. Ciapala, R. Ciftci, A. K. Ciftci, B. A. Cole, J. C. Collins, O. Dadoun, J. Dainton, A. De. Roeck, D. d'Enterria, A. Dudarev, A. Eide, R. Enberg, E. Eroglu, K. J. Eskola, L. Favart, M. Fitterer, S. Forte, A. Gaddi, P. Gambino, H. García Morales, T. Gehrmann, P. Gladkikh, C. Glasman, R. Godbole, B. Goddard, T. Greenshaw, A. Guffanti, V. Guzey, C. Gwenlan, T. Han, Y. Hao, F. Haug, W. Herr, A. Hervé, B. J. Holzer, M. Ishitsuka, M. Jacquet, B. Jeanneret, J. M. Jimenez, J. M. Jowett, H. Jung, H. Karadeniz, D. Kayran, A. Kilic, K. Kimura, M. Klein, U. Klein, T. Kluge, F. Kocak, M. Korostelev, A. Kosmicki, P. Kostka, H. Kowalski, G. Kramer, D. Kuchler, M. Kuze, T. Lappi, P. Laycock, E. Levichev, S. Levonian, V. N. Litvinenko, A. Lombardi, J. Maeda, C. Marquet, S. J. Maxfield, B. Mellado, K. H. Mess, A. Milanese, S. Moch, I. I. Morozov, Y. Muttoni, S. Myers, S. Nandi, Z. Nergiz, P. R. Newman, T. Omori, J. Osborne, E. Paoloni, Y. Papaphilippou, C. Pascaud, H. Paukkunen, E. Perez, T. Pieloni, E. Pilicer, B. Pire, R. Placakyte, A. Polini, V. Ptitsyn, Y. Pupkov, V. Radescu, S. Raychaudhuri, L. Rinolfi, R. Rohini, J. Rojo, S. Russenschuck, M. Sahin, C. A. Salgado, K. Sampei, R. Sassot, E. Sauvan, U. Schneekloth, T. Schörner-Sadenius, D. Schulte, A. Senol, A. Seryi, P. Sievers, A. N. Skrinsky, W. Smith, H. Spiesberger, A. M. Stasto, M. Strikman, M. Sullivan, S. Sultansoy, Y. P. Sun, B. Surrow, L. Szymanowski, P. Taels, I. Tapan, A. T. Tasci, E. Tassi, H. Ten. Kate, J. Terron, H. Thiesen, L. Thompson, K. Tokushuku, R. Tomás García, D. Tommasini, D. Trbojevic, N. Tsoupas, J. Tuckmantel, S. Turkoz, T. N. Trinh, K. Tywoniuk, G. Unel, J. Urakawa, P. VanMechelen, A. Variola, R. Veness, A. Vivoli, P. Vobly, J. Wagner, R. Wallny, S. Wallon, G. Watt, C. Weiss, U. A. Wiedemann, U. Wienands, F. Willeke, B. -W. Xiao, V. Yakimenko, A. F. Zarnecki, Z. Zhang, F. Zimmermann, R. Zlebcik, F. Zomer

The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. Read More

As part of the R&D toward the production of high flux of polarised Gamma-rays we have designed and built a non-planar four-mirror optical cavity with a high finesse and operated it at a particle accelerator. We report on the main challenges of such cavity, such as the design of a suitable laser based on fiber technology, the mechanical difficulties of having a high tunability and a high mechanical stability in an accelerator environment and the active stabilization of such cavity by implementing a double feedback loop in a FPGA. Read More

As part of the positron source R&D for future $e^+-e^-$ colliders and Compton based compact light sources, a high finesse non-planar four-mirror Fabry-Perot cavity has recently been installed at the ATF (KEK, Tsukuba, Japan). The first measurements of the gamma ray flux produced with a such cavity using a pulsed laser is presented here. We demonstrate the production of a flux of 2. Read More

Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of $e^-$ -- $e^+$ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-P\'erot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering \cite{ipac-mightylaser}. Read More

The next generation of e+/e- colliders will require a very intense flux of gamma rays to allow high current polarized positrons to be produced. This can be achieved by converting polarized high energy photons in polarized pairs into a target. In that context, an optical system consisting of a laser and a four-mirror passive Fabry-Perot cavity has recently been installed at the Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized gamma rays by inverse Compton scattering. Read More

2011Oct
Affiliations: 1FRIB, Michigan State University, East Lansing, Mi, USA, 2SLAC, Menlo Park, Ca, USA, 3SLAC, Menlo Park, Ca, USA, 4SLAC, Menlo Park, Ca, USA, 5SLAC, Menlo Park, Ca, USA, 6SLAC, Menlo Park, Ca, USA, 7SLAC, Menlo Park, Ca, USA, 8SLAC, Menlo Park, Ca, USA, 9SLAC, Menlo Park, Ca, USA, 10BINP, Novosibirsk, RU, 11BINP, Novosibirsk, RU, 12BINP, Novosibirsk, RU, 13BINP, Novosibirsk, RU, 14BINP, Novosibirsk, RU, 15BINP, Novosibirsk, RU, 16BINP, Novosibirsk, RU, 17BINP, Novosibirsk, RU, 18IN2P3-LAPP, Annecy-le-Vieux, F, 19IN2P3-LAPP, Annecy-le-Vieux, F, 20IN2P3-LAPP, Annecy-le-Vieux, F, 21INFN/LNF, Frascati, Roma, IT, 22INFN/LNF, Frascati, Roma, IT, 23INFN/LNF, Frascati, Roma, IT, 24INFN/LNF, Frascati, Roma, IT, 25INFN/LNF, Frascati, Roma, IT, 26INFN/LNF, Frascati, Roma, IT, 27INFN/LNF, Frascati, Roma, IT, 28INFN/LNF, Frascati, Roma, IT, 29INFN/LNF, Frascati, Roma, IT, 30INFN/LNF, Frascati, Roma, IT, 31INFN/LNF, Frascati, Roma, IT, 32INFN/LNF, Frascati, Roma, IT, 33INFN and Universita di Pisa, IT, 34INFN and Universita di Genova, IT, 35INFN and Universita di Genova, IT, 36INFN and Universita di Genova, IT, 37CERN, Geneva, CH, 38LAL, Orsay, F, 39LAL, Orsay, F, 40LAL, Orsay, F, 41LPSC, Grenoble, F, 42LPSC, Grenoble, F, 43LPSC, Grenoble, F, 44LPSC, Grenoble, F, 45CEA, Saclay

The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10$^{36}$ cm$^{-2}$ sec$^{-1}$. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the $\Upsilon$(4S) resonance. Read More

The test of the crab waist collision scheme, undergoing at the e+e- Frascati DAFNE accelerator complex since February 2008, requires a fast and accurate measurement of the absolute luminosity, as well as a full characterization of the background conditions. Three different monitors, a Bhabha calorimeter, a Bhabha GEM tracker and a gamma bremsstrahlung proportional counter have been designed, tested and installed around the interaction point end of 2007-beginning of 2008. In this paper, we describe these detectors and present their performances in various operation conditions during the 2008 and 2009 DAFNE runs. Read More

Various four-mirror optical resonators are studied in the perspective of realizing passive stacking cavities. A comparative study of the mechanical stability is provided. The polarization properties of the cavity eigenmodes are described and it is shown that the effect of mirror misalignments (or motions) induces polarization and stacking power instabilities. Read More

We describe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H$_2^+$ in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around $n$ = 70, with low angular momenta. This work provides a new 2-body system for study using laser spectroscopic techniques. Read More

We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques. Read More

We describe a scheme for producing polarised positrons at the ILC from polarised X-rays created by Compton scattering of a few-GeV electron beam off a CO2 or YAG laser. This scheme is very energy effective using high finesse laser cavities in conjunction with an electron storage ring. Read More

The CPT theorem and the Weak Equivalence Principle are foundational principles on which the standard description of the fundamental interactions is based. The validity of such basic principles should be tested using the largest possible sample of physical systems. Cold neutral antimatter (low-energy antihydrogen atoms) could be a tool for testing the CPT symmetry with high precision and for a direct measurement of the gravitational acceleration of antimatter. Read More

Atomic systems of antiparticles are the laboratories of choice for tests of CPT symmetry with antimatter. The ATHENA experiment was the first to report the production of copious amounts of cold antihydrogen in 2002. This article reviews some of the insights that have since been gained concerning the antihydrogen production process as well as the external and internal properties of the produced anti-atoms. Read More

Since the beginning of operations of the CERN Antiproton Decelerator in July 2000, the successful deceleration, storage and manipulation of antiprotons has led to remarkable progress in the production of antimatter. The ATHENA Collaboration were the first to create and detect cold antihydrogen in 2002, and we can today produce large enough amounts of antiatoms to study their properties as well as the parameters that govern their production rate. Read More

2004Jan
Affiliations: 1ATHENA Collaboration, 2ATHENA Collaboration, 3ATHENA Collaboration, 4ATHENA Collaboration, 5ATHENA Collaboration, 6ATHENA Collaboration, 7ATHENA Collaboration, 8ATHENA Collaboration, 9ATHENA Collaboration, 10ATHENA Collaboration, 11ATHENA Collaboration, 12ATHENA Collaboration, 13ATHENA Collaboration, 14ATHENA Collaboration, 15ATHENA Collaboration, 16ATHENA Collaboration, 17ATHENA Collaboration, 18ATHENA Collaboration, 19ATHENA Collaboration, 20ATHENA Collaboration, 21ATHENA Collaboration, 22ATHENA Collaboration, 23ATHENA Collaboration, 24ATHENA Collaboration, 25ATHENA Collaboration, 26ATHENA Collaboration, 27ATHENA Collaboration, 28ATHENA Collaboration, 29ATHENA Collaboration, 30ATHENA Collaboration, 31ATHENA Collaboration, 32ATHENA Collaboration

Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments. Read More

2004Jan
Affiliations: 1ATHENA Collaboration, 2ATHENA Collaboration, 3ATHENA Collaboration, 4ATHENA Collaboration, 5ATHENA Collaboration, 6ATHENA Collaboration, 7ATHENA Collaboration, 8ATHENA Collaboration, 9ATHENA Collaboration, 10ATHENA Collaboration, 11ATHENA Collaboration, 12ATHENA Collaboration, 13ATHENA Collaboration, 14ATHENA Collaboration, 15ATHENA Collaboration, 16ATHENA Collaboration, 17ATHENA Collaboration, 18ATHENA Collaboration, 19ATHENA Collaboration, 20ATHENA Collaboration, 21ATHENA Collaboration, 22ATHENA Collaboration, 23ATHENA Collaboration, 24ATHENA Collaboration, 25ATHENA Collaboration, 26ATHENA Collaboration, 27ATHENA Collaboration, 28ATHENA Collaboration, 29ATHENA Collaboration, 30ATHENA Collaboration, 31ATHENA Collaboration

We demonstrate three-dimensional annihilation imaging of antiprotons trapped in a Penning trap. Exploiting unusual feature of antiparticles, we investigate a previously unexplored regime in particle transport; the proximity of the trap wall. Particle loss on the wall, the final step of radial transport, is observed to be highly non-uniform, both radially and azimuthally. Read More

Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss non-destructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Read More

2003Jun
Affiliations: 1ATHENA Collaboration, 2ATHENA Collaboration, 3ATHENA Collaboration, 4ATHENA Collaboration, 5ATHENA Collaboration, 6ATHENA Collaboration, 7ATHENA Collaboration, 8ATHENA Collaboration, 9ATHENA Collaboration, 10ATHENA Collaboration, 11ATHENA Collaboration, 12ATHENA Collaboration, 13ATHENA Collaboration, 14ATHENA Collaboration, 15ATHENA Collaboration, 16ATHENA Collaboration, 17ATHENA Collaboration, 18ATHENA Collaboration, 19ATHENA Collaboration, 20ATHENA Collaboration, 21ATHENA Collaboration, 22ATHENA Collaboration, 23ATHENA Collaboration, 24ATHENA Collaboration, 25ATHENA Collaboration, 26ATHENA Collaboration, 27ATHENA Collaboration, 28ATHENA Collaboration, 29ATHENA Collaboration, 30ATHENA Collaboration, 31ATHENA Collaboration, 32ATHENA Collaboration

The ATHENA experiment recently produced the first atoms of cold antihydrogen. This paper gives a brief review of how this was achieved. Read More

The interest in using optical transition radiation (OTR) in high energy (multiGeV) beam diagnostics has motivated theoretical and experimental investigations on the limitations brought by diffraction on the attainable resolution. This paper presents calculations of the diffraction effects in an optical set-up using OTR. The OTR diffraction pattern in a telescopic system is calculated taking into account the radial polarization of OTR. Read More