A. Van Wel - Osservatorio Astronomico di Padova

A. Van Wel
Are you A. Van Wel?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Van Wel
Affiliation
Osservatorio Astronomico di Padova
City
Padova
Country
Italy

Pubs By Year

External Links

Pub Categories

 
Astrophysics of Galaxies (42)
 
Cosmology and Nongalactic Astrophysics (24)
 
Solar and Stellar Astrophysics (2)
 
High Energy Astrophysical Phenomena (1)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By A. Van Wel

We derive relations between the effective radii $R_{\rm{eff}}$ of galaxies and the virial radii $R_{200c}$ of their dark matter halos over the redshift range $0 < z < 3$. For galaxies, we use the measured sizes from deep images taken with \emph{Hubble Space Telescope} for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass--halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions as for our sample of galaxies with size measurements. Read More

We explore constraints on the statistical relationship between the radial size of galaxies and the radius of their host dark matter halos from $z\sim 0.1-3$ using the GAMA and CANDELS surveys. We map dark matter halo mass to galaxy stellar mass using empirical relationships from abundance matching, applied to the Bolshoi-Planck dissipationless N-body simulation. Read More

It is common practice to speak of a "green valley" that hosts galaxies whose colors are intermediate relative to those in the "blue cloud" and the "red sequence." In this study, we raise several questions about how galaxies might transition between the star-forming main sequence (SFMS) and varying "degrees of quiescence" from $z=3$ to $z\sim0$. We develop a physically and statistically motivated definition of "transition galaxies" based on their uniquely intermediate specific star formation rates, which relieves ambiguities associated with color-based selections and allows us to more cleanly compare observations to theoretical models. Read More

The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic datasets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1. Read More

In this paper we use ASPECS, the ALMA Spectroscopic Survey in the {\em Hubble} Ultra Deep Field (UDF) in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to $z\sim 4.5$. This study is based on galaxies that have been solely selected through their CO emission and not through any other property. Read More

We study the molecular gas properties of high-$z$ galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets a $\sim1$ arcmin$^2$ region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3mm and 1mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities $L_{\rm{}IR}>10^{11}$ L$_\odot$, i. Read More

We present an overview of the "KIFF" project, which provides ultra-deep Ks-band imaging of all six of the Hubble Frontier Fields clusters Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717 and MACS-1149. All of these fields have recently been observed with large allocations of Directors' Discretionary Time with the HST and Spitzer telescopes covering 0.4 < lambda < 1. Read More

The Large Early Galaxy Census (LEGA-C) is a Public Spectroscopic Survey of $\sim3200$ $K$-band selected galaxies at redshifts $z=0.6-1.0$ with stellar masses M_star > 1e10M_sun, conducted with VIMOS on ESO's Very Large Telescope. Read More

We present a new technique for wide and shallow observations using the near-infrared channel of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Wide-field near-IR surveys with HST are generally inefficient, as guide star acquisitions make it impractical to observe more than one pointing per orbit. This limitation can be circumvented by guiding with gyros alone, which is possible as long as the telescope has three functional gyros. Read More

The most frequently proposed model for the origin of quasars holds that the high accretion rates seen in luminous active galactic nuclei are primarily triggered during major mergers between gas-rich galaxies. While plausible for decades, this model has only begun to be tested with statistical rigor in the past few years. Here we report on a Hubble Space Telescope study to test this hypothesis for $z=2$ quasars with high super-massive black hole masses ($M_\mathrm{BH}=10^9-10^{10}~M_\odot{}$), which dominate cosmic black hole growth at this redshift. Read More

We derive the total cold gas, atomic hydrogen, and molecular gas masses of approximately 24 000 galaxies covering four decades in stellar mass at redshifts 0.5 < z < 3.0, taken from the CANDELS survey. Read More

It is well established that (1) star-forming galaxies follow a relation between their star formation rate (SFR) and stellar mass (M$_{\star}$), the "star-formation sequence", and (2) the SFRs of galaxies correlate with their structure, where star-forming galaxies are less concentrated than quiescent galaxies at fixed mass. Here, we consider whether the scatter and slope of the star-formation sequence is correlated with systematic variations in the Sersic indices, $n$, of galaxies across the SFR-M$_{\star}$ plane. We use a mass-complete sample of 23,848 galaxies at $0. Read More

We present Ha maps at 1kpc spatial resolution for star-forming galaxies at z~1, made possible by the WFC3 grism on HST. Employing this capability over all five 3D-HST/CANDELS fields provides a sample of 2676 galaxies. By creating deep stacked Halpha (Ha) images, we reach surface brightness limits of 1x10^-18\erg\s\cm^2\arcsec^2, allowing us to map the distribution of ionized gas out to >10kpc for typical L* galaxies at this epoch. Read More

In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshifts and extensive photometry in all five 3D-HST/CANDELS fields, more than doubling the area used previously for such studies, and combine these data with Keck MOSFIRE and NIRSPEC spectroscopy. Read More

We combine SDSS and WISE photometry for the full SDSS spectroscopic galaxy sample, creating SEDs that cover lambda=0.4-22 micron for an unprecedented large and comprehensive sample of 858,365 present-epoch galaxies. Using MAGPHYS we then model simultaneously and consistently both the attenuated stellar SED and the dust emission at 12 micron and 22 micron, producing robust new calibrations for monochromatic mid-IR star formation rate proxies. Read More

We report on our first set of spectroscopic Hubble Space Telescope observations of the z~11 candidate galaxy strongly lensed by the MACSJ0647.7+7015 galaxy cluster. The three lensed images are faint and we show that these early slitless grism observations are of sufficient depth to investigate whether this high-redshift candidate, identified by its strong photometric break at ~1. Read More

We utilize the CLASH (Cluster Lensing And Supernova survey with Hubble) observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y105) and F125W (J125), as the flux of the central bands could be enhanced by the presence of [O III] 4959, 5007 at redshift of about 0.93-1. Read More

Interpreting observations of distant galaxies in terms of constraints on physical parameters - such as stellar mass, star-formation rate (SFR) and dust optical depth - requires spectral synthesis modelling. We analyse the reliability of these physical parameters as determined under commonly adopted `classical' assumptions: star-formation histories assumed to be exponentially declining functions of time, a simple dust law and no emission-line contribution. Improved modelling techniques and data quality now allow us to use a more sophisticated approach, including realistic star-formation histories, combined with modern prescriptions for dust attenuation and nebular emission (Pacifici et al. Read More

2014Sep
Affiliations: 1INAF-OARome, 2UEDIN, 3INAF-OARome, 4UEDIN, 5INAF-OARome, 6INAF-OARome, 7INAF-OARome, 8INAF-OARome, 9UEDIN, 10INAF-OARome, 11INAF-OARome, 12The School of Physics and Astronomy, University of Nottingham, 13Kapteyn Astronomical Institute, University of Groningen, 14Spitzer Science Center, 15Department of Physics and Astronomy, University of California, Irvine, 16UEDIN, 17Kapteyn Astronomical Institute, University of Groningen, 18CEA-Saclay, 19National Optical Astronomy Observatories, Tucson, AZ, USA, 20UCO/Lick Observatory, Department of Astronomy and Astrophysics University of California, Santa Cruz, 21Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA, 22Space Telescope Science Institute, Baltimore, MD, USA, 23Department of Astronomy, University of Massachusetts, Amherst, MA, USA, 24INAF-OARome, 25Aix Marseille Universite, CNRS, LAM, 26Department of Astronomy, University of Massachusetts, Amherst, MA, USA, 27INAF - Osservatorio Astronomico di Trieste, 28Department of Astronomy, University of Massachusetts, Amherst, MA, USA, 29Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA, 30Department of Astronomy, University of Massachusetts, Amherst, MA, USA, 31MPIA, 32Osservatorio Astronomico di Padova, 33Minnesota Institute of Astrophysics and School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA, 34The School of Physics and Astronomy, University of Nottingham, 35INAF-OARome, 36Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ, USA, 37INAF-OARome, 38INAF Osservatorio Astronomico di Bologna, 39Osservatorio Astronomico di Padova, 40School of Physics and Astronomy, University of St Andrews, 41Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA, 42INAF-Osservatorio Astrofisico di Arcetri

We present the results of a new, ultra-deep, near-infrared imaging survey executed with the Hawk-I imager at the ESO VLT, of which we make all the data public. This survey, named HUGS (Hawk-I UDS and GOODS Survey), provides deep, high-quality imaging in the K and Y bands over the CANDELS UDS and GOODS-South fields. We describe here the survey strategy, the data reduction process, and the data quality. Read More

We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z~1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). Read More

We present the first observations of the Frontier Fields Cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin^2), MUSE is ideal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the Science Verification phase on this cluster and measured redshifts for 53 galaxies. Read More

The very-high energy (VHE, E > 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. Read More

Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Read More

We present profiles of temperature (Tx), gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH HST and ground-based lensing data. Radial profiles of Chandra and XMM electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in Tx measurements. Read More

The dense interiors of massive galaxies are among the most intriguing environments in the Universe. In this paper we ask when these dense cores were formed and determine how galaxies gradually assembled around them. We select galaxies that have a stellar mass >3x10^10 Msun inside r=1 kpc out to z=2. Read More

We investigate the gas-phase metallicity and Lyman Continuum (LyC) escape fraction of a strongly gravitationally lensed, extreme emission-line galaxy at z=3.417, J1000+0221S, recently discovered by the CANDELS team. We derive ionization and metallicity sensitive emission-line ratios from H+K band LBT/LUCI medium resolution spectroscopy. Read More

The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ~900 square arcminutes in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging datasets in addition to the HST data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0. Read More

The processes that trigger Active Galactic Nuclei (AGN) remain poorly understood. While lower luminosity AGN may be triggered by minor disturbances to the host galaxy, stronger disturbances are likely required to trigger luminous AGN. Major wet mergers of galaxies are ideal environments for AGN triggering since they provide large gas supplies and galaxy scale torques. Read More

Using spectroscopy from the Large Binocular Telescope and imaging from the Hubble Space Telescope we discovered the first strong galaxy lens at z(lens)>1. The lens has a secure photometric redshift of z=1.53+/-0. Read More

We present evidence for a strong relationship between galaxy size and environment for the quiescent population in the redshift range 1 < z < 2. Environments were measured using projected galaxy overdensities on a scale of 400 kpc, as determined from ~ 96,000 K-band selected galaxies from the UKIDSS Ultra Deep Survey (UDS). Sizes were determined from ground-based K-band imaging, calibrated using space-based CANDELS HST observations in the centre of the UDS field, with photometric redshifts and stellar masses derived from 11-band photometric fitting. Read More

We discuss the state of the assembly of the Hubble Sequence in the mix of bright galaxies at redshift 1.4< z \le 2.5 with a large sample of 1,671 galaxies down to H_{AB}~26, selected from the HST/ACS and WFC3 images of the GOODS--South field obtained as part of the GOODS and CANDELS observations. Read More

In this paper we present a detailed study of the structures and morphologies of a sample of 1188 massive galaxies with Mstar>10^10Msun between redshifts z=1-3 within the Ultra Deep Survey (UDS) region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field. Using this sample we determine how galaxy structure and morphology evolve with time. We visually classify our sample into disks, ellipticals and peculiar systems and correct for redshift effects on our classifications through simulations. Read More

We present strong empirical evidence for a physical connection between the occurrence of a starburst (SB) and a luminous AGN phase. Drawing infrared (IR), X-ray, and optically selected samples from COSMOS, we find that the locus of type-2 AGN hosts in the optical colour-magnitude (U-V/V) and colour-colour (U-V/V-J) space significantly overlaps with that of IR-luminous (L_IR > 10^10 L_sun) galaxies. Based on our observations, we propose that, when simultaneously building their black hole and stellar masses, type-2 AGN hosts are located in the same part of colour-colour space as dusty star-forming galaxies. Read More

Galaxies with the mass of the Milky Way dominate the stellar mass density of the Universe but it is uncertain how and when they were assembled. Here we study progenitors of these galaxies out to z=2.5, using data from the 3D-HST and CANDELS Treasury surveys. Read More

We follow the structural evolution of star forming galaxies (SFGs) like the Milky Way by selecting progenitors to z~1.3 based on the stellar mass growth inferred from the evolution of the star forming sequence. We select our sample from the 3D-HST survey, which utilizes spectroscopy from the HST WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Read More