A. V. Filippenko - University Berkeley

A. V. Filippenko
Are you A. V. Filippenko?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. V. Filippenko
Affiliation
University Berkeley
Country
United States

Pubs By Year

Pub Categories

 
High Energy Astrophysical Phenomena (38)
 
Solar and Stellar Astrophysics (24)
 
Cosmology and Nongalactic Astrophysics (18)
 
Astrophysics of Galaxies (17)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By A. V. Filippenko

With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF13dqy = SN 2013fs, a mere ~3 hr after explosion. Read More

We investigate a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe~Ia) that is able to estimate the first-light time of SNe~Ia, even when they are not discovered extremely early. With an improved ability to estimate the time of first light for SNe Ia, we compute the rise times for a sample of 56 well-observed SNe~Ia. We find rise times ranging from 10. Read More

SN2005ip was a TypeIIn event notable for its sustained strong interaction with circumstellar material (CSM), coronal emission lines, and IR excess, interpreted as shock interaction with the very dense and clumpy wind of an extreme red supergiant. We present a series of late-time spectra of SN2005ip and a first radio detection of this SN, plus late-time X-rays, all of which indicate that its CSM interaction is still strong a decade post-explosion. We also present and discuss new spectra of geriatric SNe with continued CSM interaction: SN1988Z, SN1993J, and SN1998S. Read More

We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. Read More

We present the Palomar Transient Factory discoveries and the photometric and spectroscopic observations of PTF11kmb and PTF12bho. We show that both transients have properties consistent with the class of calcium-rich gap transients, specifically lower peak luminosities and rapid evolution compared to ordinary supernovae, and a nebular spectrum dominated by [Ca II] emission. A striking feature of both transients is their host environments: PTF12bho is an intra-cluster transient in the Coma Cluster, while PTF11kmb is located in a loose galaxy group, at a physical offset ~150 kpc from the most likely host galaxy. Read More

SN 2013ej is a well-studied core-collapse supernova (SN) that stemmed from a directly identified red supergiant (RSG) progenitor in galaxy M74. The source exhibits signs of substantial geometric asphericity, X-rays from persistent interaction with circumstellar material (CSM), thermal emission from warm dust, and a light curve that appears intermediate between supernovae of Types II-P and II-L. The proximity of this source motivates a close inspection of these physical characteristics and their potential interconnection. Read More

We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 to 9157 angstroms) combine simultaneous HST , Swift , and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Read More

2016Nov
Affiliations: 1STScI, 2IPAC/Caltech, 3NASA Goddard, 4Steward Observatory, 5UC Berkeley, 6Steward Observatory, 7CRESST/UMBC/GSFC, 8UC Santa Cruz/University of Illinois, 9UC Berkeley, 10JPL/Caltech, 11UC Berkeley

The nature of the progenitor star (or system) for the Type IIn supernova (SN) subclass remains uncertain. While there are direct imaging constraints on the progenitors of at least four Type IIn supernovae, one of them being SN 2010jl, ambiguities remain in the interpretation of the unstable progenitors and the explosive events themselves. A blue source in pre-explosion HST/WFPC2 images falls within the 5 sigma astrometric error circle derived from post-explosion ground-based imaging of SN 2010jl. Read More

Herein we analyse late-time (post-plateau; 103 < t < 1229 d) optical spectra of low-redshift (z < 0.016), hydrogen-rich Type IIP supernovae (SNe IIP). Our newly constructed sample contains 91 nebular spectra of 38 SNe IIP, which is the largest dataset of its kind ever analysed in one study, and many of the objects have complementary photometric data. Read More

We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF12dam is very similar in duration (~10 days) and brightness relative to the main peak (2-3 mag fainter) compared to those observed in other SLSNe-I. Read More

We re-examine the classifications of supernovae (SNe) presented in the Lick Observatory Supernova Search (LOSS) volume-limited sample with a focus on the stripped-envelope SNe. The LOSS volume-limited sample, presented by Leaman et al. (2011) and Li et al. Read More

Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we re-analyze the ten-year 1998-2008 SN sample collected by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe; i.e. Read More

In Paper I of this series, we showed that the ratio between stripped-envelope supernova (SE SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses $\lesssim 10^{10}~{\rm M}_\odot$. Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. Read More

Extensive photometric and spectroscopic observations are presented for SN 2014cx, a type IIP supernova (SN) exploding in the nearby galaxy NGC 337. The observations are performed in optical and ultraviolet bands, covering from -20 to +400 days from the peak light. The stringent detection limit from prediscovery images suggests that this supernova was actually detected within about 1 day after explosion. Read More

Type Ibn supernovae are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material. We report optical observations of six new Type Ibn supernovae: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. Read More

We present results of an optical search for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258, conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy). The targets include 9 newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, that yielded a total of 2200 variables with well-defined selection criteria -- the largest such sample identified outside the Local Group. Read More

Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. Read More

We present optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349, and 578 days post-maximum light, as well as an ultraviolet spectrum obtained with Hubble Space Telescope at 360 days post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fit with models which neglect collisional and radiative data for forbidden lines. Read More

Context: Research on supernovae (SNe) over the past decade has confirmed that there is a distinct class of events which are much more luminous (by $\sim2$ mag) than canonical core-collapse SNe (CCSNe). These events with visual peak magnitudes $\lesssim-21$ are called superluminous SNe (SLSNe). Aims: There are a few intermediate events which have luminosities between these two classes. Read More

We present the second multi-frequency radio detection of a reverse shock in a $\gamma$-ray burst. By combining our extensive radio observations of the Fermi-LAT GRB 160509A at $z = 1.17$ up to $20$ days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at $\lesssim10~$days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Read More

We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (i)PTF. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below ~17 solar masses. Read More

We present optical/near-infrared spectroscopy and photometry of the supernova (SN) PS15si. This object was originally identified as a Type IIn SN, but here we argue that it should be reclassified as a Type Ia SN with narrow hydrogen lines originating from interaction with circumstellar matter (CSM; i.e. Read More

The progenitors of some supernovae (SNe) exhibit outbursts with super-Eddington luminosities prior to their final explosions. This behavior is common among Type IIn SNe, but the driving mechanisms of these precursors are not yet well understood. SNHunt 275 was announced as a possible new SN during May 2015. Read More

Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Read More

We present ultraviolet through near-infrared photometry and spectroscopy of the host galaxies of all superluminous supernovae (SLSNe) discovered by the Palomar Transient Factory prior to 2013, and derive measurements of their luminosities, star-formation rates, stellar masses, and gas-phase metallicities. We find that Type I (hydrogen-poor) SLSNe are found almost exclusively in low-mass (M < 2x10^9 M_sun) and metal-poor (12+log[O/H] < 8.4) galaxies. Read More

Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor candidate in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope (HST) observations of the SN site 740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. Read More

Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Read More

2016Mar

During an intensive Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV monitoring campaign of the Seyfert~1 galaxy NGC 5548 performed from 2014 February to July, the normally highly correlated far-UV continuum and broad emission-line variations decorrelated for ~60 to 70 days, starting ~75 days after the first HST/COS observation. Following this anomalous state, the flux and variability of the broad emission lines returned to a more normal state. This transient behavior, characterised by significant deficits in flux and equivalent width of the strong broad UV emission lines, is the first of its kind to be unambiguously identified in an active galactic nucleus reverberation mapping campaign. Read More

High-quality collections of Type II supernova (SN) light curves are scarce because they evolve for hundreds of days, making follow-up observations time consuming and often extending over multiple observing seasons. In light of these difficulties, the diversity of SNe II is not fully understood. Here we present ultraviolet and optical photometry of 12 SNe II monitored by the Las Cumbres Observatory Global Telescope Network (LCOGT) during 2013-2014, and compare them with previously studied SNe having well-sampled light curves. Read More

Supernova (SN) 2015U (also known as PSN J07285387+3349106) was discovered in NGC 2388 on 2015 Feb. 11. A rapidly evolving and luminous event, it showed effectively hydrogen-free spectra dominated by relatively narrow helium P-Cygni spectral features and it was classified as a SN Ibn. Read More

OJ287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts which are predictable in a binary black hole model. The model predicted a major optical outburst in December 2015. Read More

The Galactic transient V1309 Sco was the result of a merger in a low-mass star system, while V838 Mon was thought to be a similar merger event from a more massive B-type progenitor. In this paper we study an optical/IR transient discovered in the nearby galaxy NGC4490, which appeared similar to these merger events (unobscured progenitor, irregular multi-peaked light curve, increasingly red color, similar optical spectrum, IR excess at late times), but which had a higher peak luminosity and longer duration in outburst. NGC4490-OT has less in common with the class of SN~2008S-like transients. Read More

We present well-sampled optical observations of the bright Type Ia supernova (SN~Ia) SN 2011fe in M101. Our data, starting from $\sim16$ days before maximum light and extending to $\sim463$ days after maximum, provide an unprecedented time series of spectra and photometry for a normal SN~Ia. Fitting the early-time rising light curve, we find that the luminosity evolution of SN 2011fe follows a $t^n$ law, with the index $n$ being close to 2. Read More

The optical and optical/near-infrared pseudo-bolometric light curves of 85 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity $L_{\mathrm{p}}$, enabling the construction of a luminosity function. Subsequently, the mass of $^{56}$Ni synthesised in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Read More

Type IIP supernovae (SNe IIP) have recently been proposed as metallicity ($Z$) probes. The spectral models of Dessart et al. (2014) showed that the pseudo-equivalent width of Fe II $\lambda$5018 (pEW$_{5018}$) during the plateau phase depends on the primordial $Z$, but there was a paucity of SNe IIP exhibiting pEW$_{5018}$ that were compatible with $Z < 0. Read More

Supernova (SN) 1987A was a peculiar H-rich event with a long-rising (LR) light curve (LC), stemming from a compact blue supergiant star (BSG). Only a few similar events have been presented in the literature. We present new data for a sample of 6 LR Type II SNe (SNe II), 3 of which were discovered and observed by the Palomar Transient Factory (PTF) and 3 observed by the Caltech Core-Collapse Project (CCCP). Read More

We examine the late-time (t > 200 days after peak brightness) spectra of Type Iax supernovae (SNe Iax), a low-luminosity, low-energy class of thermonuclear stellar explosions observationally similar to, but distinct from, Type Ia supernovae. We present new spectra of SN 2014dt, resulting in the most complete published late-time spectral sequence of a SN Iax. At late times, SNe Iax have generally similar spectra, all with a similar continuum shape and strong forbidden-line emission. Read More

We present a Hubble Space Telescope STIS spectrum of ASASSN-14li, the first rest-frame UV spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with $T_{\mathrm{UV}} = 3.5 \times 10^{4}$ K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Read More

We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in Fall 2014. The HST light curve of SN Refsdal matches the distinctive, slowly rising light curves of SN 1987A-like supernovae (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. Read More

We present a high-precision measurement of the parallax for the 12-day Cepheid SS Canis Majoris, obtained via spatial scanning with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Spatial scanning enables astrometric measurements with a precision of 20-40 muas, an order of magnitude better than pointed observations. SS CMa is the second Cepheid targeted for parallax measurement with HST, and is the first of a sample of eighteen long-period >~ 10 days) Cepheids selected in order to improve the calibration of their period-luminosity relation and eventually permit a determination of the Hubble constant H_0 to better than 2%. Read More

We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) 'Refsdal', a gravitationally lensed SN at z=1.488$\pm$0.001 with multiple images behind the galaxy cluster MACS J1149. Read More

In Hubble Space Telescope (HST) imaging taken on 10 November 2014, four images of supernova (SN) "Refsdal" (redshift z=1.49) appeared in an Einstein-cross--like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z=0. Read More

Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra ($\leq 10$ days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 Type II SNe showing flash-ionized (FI) signatures in their first spectra. Read More

During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of $57$ $R$-band Type II SN light curves that are well monitored during their rise, having $>5$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within $1-3$ days. Read More

While SN impostors resemble the Great Eruption of eta Car in the sense that their spectra show narrow H lines and they have typical peak absolute magnitudes of -13 to -14 mag, most extragalactic events observed so far are quite different from eta Car in duration. Their bright phases typically last for 100~d or less, rather than persisting for several years. The transient object UGC2773-OT had a similar peak absolute magnitude to other SN impostors, but with a gradual 5-yr prediscovery rise. Read More

Supernova "Refsdal," multiply imaged by cluster MACSJ1149.5+2223, represents a rare opportunity to make a true blind test of model predictions in extragalactic astronomy, on a time scale that is short compared to a human lifetime. In order to take advantage of this event, we produced seven gravitational lens models with five independent methods, based on Hubble Space Telescope (HST) Hubble Frontier Field images, along with extensive spectroscopic follow-up observations by HST, the Very Large and the Keck Telescopes. Read More

We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multi-wavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in nine filters (\emph{BVRI} and \emph{ugriz}). Combined with ultraviolet data from the \emph{Hubble Space Telescope} and \emph{Swift}, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158\,\AA\ to the $z$ band ($\sim\!9160$\,\AA). Read More