A. Martin - IRISA

A. Martin
Are you A. Martin?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Martin
Affiliation
IRISA
Location

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Phenomenology (20)
 
High Energy Physics - Experiment (10)
 
Quantum Physics (9)
 
Computer Science - Artificial Intelligence (6)
 
Nuclear Experiment (3)
 
Mathematics - Algebraic Geometry (3)
 
Physics - Atomic Physics (2)
 
Computer Science - Cryptography and Security (2)
 
Physics - Instrumentation and Detectors (2)
 
Physics - Optics (2)
 
Cosmology and Nongalactic Astrophysics (1)
 
High Energy Physics - Theory (1)
 
Physics - Fluid Dynamics (1)
 
Mathematics - Combinatorics (1)
 
Mathematics - Mathematical Physics (1)
 
Mathematical Physics (1)
 
Computer Science - Human-Computer Interaction (1)
 
Mathematics - Group Theory (1)
 
Statistics - Machine Learning (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By A. Martin

Dark matter may be discovered through its capture in stars and subsequent annihilation. It is usually assumed that dark matter is captured after a single scattering event in the star, however this assumption breaks down for heavy dark matter, which requires multiple collisions with the star to lose enough kinetic energy to become captured. We analytically compute how multiple scatters alter the capture rate of dark matter and identify the parameter space where the affect is largest. Read More

We discuss the possibility of identifying invisible objects (e.g. dark matter) via missing mass in Central Exclusive Processes; that is, in events where only forward protons are detected at the LHC. Read More

A multipermutation with $k$ copies each of $1\ldots n$ is Carlitz if neighbours are different. We enumerate these objects for $k=2,3,4$ and derive recurrences. In particular, we prove and improve a conjectured recurrence for $k=3$, stated in OEIS, the Online Encyclopedia of Integer Sequences. Read More

To obtain more precise parton distribution functions (PDFs) it is important to include data on inclusive high transverse energy jet production in the global parton analyses. These data have high statistics and the NNLO terms in the perturbative QCD (pQCD) description are now available. Our aim is to reduce the uncertainty in the comparison of the jet data with pQCD. Read More

We show how some parton distribution functions related to the transverse spin of nucleons can be extracted point by point from combinations of proton and deuteron observables. In particular, we present a determination of the valence and sea Sivers functions from the single-spin asymmetries measured by COMPASS. Read More

We give necessary conditions for two (including non-reduced and multiple) Kodaira curves to be derived equivalent. We classify Fourier-Mukai partners of any reduced Kodaira curve. We prove that the derived category of singularities of any non-reduced and non-multiple Kodaira curve is idempotent complete. Read More

We study derived equivalences of Abelian varieties in terms of their associated symplectic data. For simple Abelian varieties over an algebraically closed field of characteristic zero we prove that the natural correspondence introduced by Orlov, which maps equivalences to symplectic isomorphisms, is surjective. Read More

We propose a Monte Carlo code for the simulation of the fragmentation process of polarized quarks into pseudoscalar mesons. Such process is generated recursively once the flavour, the energy and the spin density matrix of the initial quark are specified, performing a cascade of splittings of the type $q\rightarrow h+q'$, where $q, q'$ indicate quarks and $h$ the hadron with flavour content $q\bar{q}'$. Each splitting is generated using a splitting distribution which has been calculated in a string fragmentation framework including, for the first time, the ${}^3P_0$ mechanism. Read More

We present a point-by-point determination of the Sivers distributions from hadron leptoproduction data. The method, which relies on some simple assumptions, is based on the combined analysis of proton and deuteron observables. We make use of the single-spin asymmetries measured by COMPASS in semi-inclusive deep inelastic scattering of 160 GeV muons on transversely polarized proton and deuteron targets. Read More

Social messages classification is a research domain that has attracted the attention of many researchers in these last years. Indeed, the social message is different from ordinary text because it has some special characteristics like its shortness. Then the development of new approaches for the processing of the social message is now essential to make its classification more efficient. Read More

We describe the space of Eisenbud-Harris limit linear series on a chain of elliptic curves and compare it with the theory of divisors on tropical chains. Either model allows to compute some invariants of Brill-Noether theory using combinatorial methods. We introduce effective limit linear series. Read More

2017Jan
Affiliations: 1LARODEC, DRUID, CERT, 2IRISA, UR1, DRUID, 3IRISA, 4CERT, 5LARODEC
Category:

Influence maximization is the problem of selecting a set of influential users in the social network. Those users could adopt the product and trigger a large cascade of adoptions through the " word of mouth " effect. In this paper, we propose two evidential influence maximization models for Twitter social network. Read More

2017Jan

Crowdsourcing, a major economic issue, is the fact that the firm outsources internal task to the crowd. It is a form of digital subcontracting for the general public. The evaluation of the participants work quality is a major issue in crowdsourcing. Read More

High-dimensional entanglement offers promising perspectives in quantum information science. In practice, however, the main challenge is to devise efficient methods to characterize high-dimensional entanglement, based on the available experimental data which is usually rather limited. Here we report the characterization and certification of high-dimensional entanglement in photon pairs, encoded in temporal modes. Read More

2017Jan
Authors: C. Adolph, M. Aghasyan, R. Akhunzyanov, M. G. Alexeev, G. D. Alexeev, A. Amoroso, V. Andrieux, N. V. Anfimov, V. Anosov, A. Antoshkin, K. Augsten, W. Augustyniak, A. Austregesilo, C. D. R. Azevedo, B. Badelek, F. Balestra, M. Ball, J. Barth, R. Beck, Y. Bedfer, J. Bernhard, K. Bicker, E. R. Bielert, R. Birsa, M. Bodlak, P. Bordalo, F. Bradamante, C. Braun, A. Bressan, M. Buechele, W. -C. Chang, C. Chatterjee, M. Chiosso, I. Choi, S. -U. Chung, A. Cicuttin, M. L. Crespo, Q. Curiel, S. Dalla Torre, S. S. Dasgupta, S. Dasgupta, O. Yu. Denisov, L. Dhara, S. V. Donskov, N. Doshita, Ch. Dreisbach, V. Duic, W. Duennweber, M. Dziewiecki, A. Efremov, P. D. Eversheim, W. Eyrich, M. Faessler, A. Ferrero, M. Finger, M. Finger jr., H. Fischer, C. Franco, N. du Fresne von Hohenesche, J. M. Friedrich, V. Frolov, E. Fuchey, F. Gautheron, O. P. Gavrichtchouk, S. Gerassimov, J. Giarra, F. Giordano, I. Gnesi, M. Gorzellik, S. Grabmueller, A. Grasso, M. Grosse Perdekamp, B. Grube, T. Grussenmeyer, A. Guskov, F. Haas, D. Hahne, G. Hamar, D. von Harrach, F. H. Heinsius, R. Heitz, F. Herrmann, N. Horikawa, N. d'Hose, C. -Y. Hsieh, S. Huber, S. Ishimoto, A. Ivanov, Yu. Ivanshin, T. Iwata, V. Jary, R. Joosten, P. Joerg, E. Kabuss, A. Kerbizi, B. Ketzer, G. V. Khaustov, Yu. A. Khokhlov, Yu. Kisselev, F. Klein, K. Klimaszewski, J. H. Koivuniemi, V. N. Kolosov, K. Kondo, K. Koenigsmann, I. Konorov, V. F. Konstantinov, A. M. Kotzinian, O. M. Kouznetsov, M. Kraemer, P. Kremser, F. Krinner, Z. V. Kroumchtein, Y. Kulinich, F. Kunne, K. Kurek, R. P. Kurjata, A. A. Lednev, A. Lehmann, M. Levillain, S. Levorato, Y. -S. Lian, J. Lichtenstadt, R. Longo, A. Maggiora, A. Magnon, N. Makins, N. Makke, G. K. Mallot, B. Marianski, A. Martin, J. Marzec, J. Matousek, H. Matsuda, T. Matsuda, G. V. Meshcheryakov, M. Meyer, W. Meyer, Yu. V. Mikhailov, M. Mikhasenko, E. Mitrofanov, N. Mitrofanov, Y. Miyachi, A. Nagaytsev, F. Nerling, D. Neyret, J. Novy, W. -D. Nowak, G. Nukazuka, A. S. Nunes, A. G. Olshevsky, I. Orlov, M. Ostrick, D. Panzieri, B. Parsamyan, S. Paul, J. -C. Peng, F. Pereira, M. Pesek, D. V. Peshekhonov, N. Pierre, S. Platchkov, J. Pochodzalla, V. A. Polyakov, J. Pretz, M. Quaresma, C. Quintans, S. Ramos, C. Regali, G. Reicherz, C. Riedl, N. S. Rogacheva, M. Roskot, D. I. Ryabchikov, A. Rybnikov, A. Rychter, R. Salac, V. D. Samoylenko, A. Sandacz, C. Santos, S. Sarkar, I. A. Savin, T. Sawada, G. Sbrizzai, P. Schiavon, K. Schmidt, H. Schmieden, K. Schoenning, E. Seder, A. Selyunin, L. Silva, L. Sinha, S. Sirtl, M. Slunecka, J. Smolik, A. Srnka, D. Steffen, M. Stolarski, O. Subrt, M. Sulc, H. Suzuki, A. Szabelski, T. Szameitat, P. Sznajder, S. Takekawa, M. Tasevsky, S. Tessaro, F. Tessarotto, F. Thibaud, A. Thiel, F. Tosello, V. Tskhay, S. Uhl, J. Veloso, M. Virius, J. Vondra, S. Wallner, T. Weisrock, M. Wilfert, J. ter Wolbeek, K. Zaremba, P. Zavada, M. Zavertyaev, E. Zemlyanichkina, N. Zhuravlev, M. Ziembicki, A. Zink

The Sivers function describes the correlation between the transverse spin of a nucleon and the transverse motion of its partons. It was extracted from measurements of the azimuthal asymmetry of hadrons produced in semi-inclusive deep inelastic scattering of leptons off transversely polarised nucleon targets, and it turned out to be non-zero for quarks. In this letter the evaluation of the Sivers asymmetry for gluons in the same process is presented. Read More

An approach to quantum random number generation based on unambiguous quantum state discrimination (USD) is developed. We consider a prepare-and-measure protocol, where two non-orthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them. Because the states are non-orthogonal, this necessarily leads to a minimal rate of inconclusive events whose occurrence must be genuinely random and which provide the randomness source that we exploit. Read More

We present the chemical abundance analysis of 19 upper main-sequence stars of the young open cluster NGC 6250 (log t ~ 7.42 yr). This work is part of a project aimed at setting observational constraints on the theory of atomic diffusion in stellar photospheres, by means of a systematic study of the abundances of the chemical elements of early F-, A- and late B-type stars of well-determined age. Read More

Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Read More

2016Dec
Authors: C. Adolph, M. Aghasyan, R. Akhunzyanov, M. G. Alexeev, G. D. Alexeev, A. Amoroso, V. Andrieux, N. V. Anfimov, V. Anosov, K. Augsten, W. Augustyniak, A. Austregesilo, C. D. R. Azevedo, B. Badelek, F. Balestra, M. Ball, J. Barth, R. Beck, Y. Bedfer, J. Bernhard, K. Bicker, E. R. Bielert, R. Birsa, M. Bodlak, P. Bordalo, F. Bradamante, C. Braun, A. Bressan, M. Buechele, W. -C. Chang, C. Chatterjee, M. Chiosso, I. Choi, S. -U. Chung, A. Cicuttin, M. L. Crespo, Q. Curiel, S. Dalla Torre, S. S. Dasgupta, S. Dasgupta, O. Yu. Denisov, L. Dhara, S. V. Donskov, N. Doshita, Ch. Dreisbach, V. Duic, W. Duennweber, M. Dziewiecki, A. Efremov, P. D. Eversheim, W. Eyrich, M. Faessler, A. Ferrero, M. Finger, M. Finger jr., H. Fischer, C. Franco, N. du Fresne von Hohenesche, J. M. Friedrich, V. Frolov, E. Fuchey, F. Gautheron, O. P. Gavrichtchouk, S. Gerassimov, J. Giarra, F. Giordano, I. Gnesi, M. Gorzellik, S. Grabmueller, A. Grasso, M. Grosse Perdekamp, B. Grube, T. Grussenmeyer, A. Guskov, F. Haas, D. Hahne, G. Hamar, D. von Harrach, F. H. Heinsius, R. Heitz, F. Herrmann, N. Horikawa, N. d'Hose, C. -Y. Hsieh, S. Huber, S. Ishimoto, A. Ivanov, Yu. Ivanshin, T. Iwata, V. Jary, R. Joosten, P. Joerg, E. Kabuss, A. Kerbizi, B. Ketzer, G. V. Khaustov, Yu. A. Khokhlov, Yu. Kisselev, F. Klein, K. Klimaszewski, J. H. Koivuniemi, V. N. Kolosov, K. Kondo, K. Koenigsmann, I. Konorov, V. F. Konstantinov, A. M. Kotzinian, O. M. Kouznetsov, M. Kraemer, P. Kremser, F. Krinner, Z. V. Kroumchtein, Y. Kulinich, F. Kunne, K. Kurek, R. P. Kurjata, A. A. Lednev, A. Lehmann, M. Levillain, S. Levorato, Y. -S. Lian, J. Lichtenstadt, R. Longo, A. Maggiora, A. Magnon, N. Makins, N. Makke, G. K. Mallot, B. Marianski, A. Martin, J. Marzec, J. Matousek, H. Matsuda, T. Matsuda, G. V. Meshcheryakov, M. Meyer, W. Meyer, Yu. V. Mikhailov, M. Mikhasenko, E. Mitrofanov, N. Mitrofanov, Y. Miyachi, A. Nagaytsev, F. Nerling, D. Neyret, J. Novy, W. -D. Nowak, G. Nukazuka, A. S. Nunes, A. G. Olshevsky, I. Orlov, M. Ostrick, D. Panzieri, B. Parsamyan, S. Paul, J. -C. Peng, F. Pereira, M. Pesek, D. V. Peshekhonov, N. Pierre, S. Platchkov, J. Pochodzalla, V. A. Polyakov, J. Pretz, M. Quaresma, C. Quintans, S. Ramos, C. Regali, G. Reicherz, C. Riedl, M. Roskot, N. S. Rossiyskaya, D. I. Ryabchikov, A. Rybnikov, A. Rychter, R. Salac, V. D. Samoylenko, A. Sandacz, C. Santos, S. Sarkar, I. A. Savin, T. Sawada, G. Sbrizzai, P. Schiavon, K. Schmidt, H. Schmieden, K. Schoenning, E. Seder, A. Selyunin, L. Silva, L. Sinha, S. Sirtl, M. Slunecka, J. Smolik, A. Srnka, D. Steffen, M. Stolarski, O. Subrt, M. Sulc, H. Suzuki, A. Szabelski, T. Szameitat, P. Sznajder, S. Takekawa, M. Tasevsky, S. Tessaro, F. Tessarotto, F. Thibaud, A. Thiel, F. Tosello, V. Tskhay, S. Uhl, J. Veloso, M. Virius, J. Vondra, S. Wallner, T. Weisrock, M. Wilfert, R. Windmolders, J. ter Wolbeek, K. Zaremba, P. Zavada, M. Zavertyaev, E. Zemlyanichkina, N. Zhuravlev, M. Ziembicki, A. Zink

Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004Read More

We give a complete proposal showing how to detect the non-classical nature of photonic states with naked eyes as detectors. The enabling technology is a sub-poissonian photonic state that is obtained from single photons, displacement operations in phase space and basic non-photon number resolving detectors. We present a detailed statistical analysis of our proposal including imperfect photon creation and detection and a realistic model of the human eye. Read More

We present an external cavity diode laser setup using two identical, commercially available interference filters operated in the blue wavelength range around 450 nm. The combination of the two filters decreases the transmission width, while increasing the edge steepness without a significant reduction in peak transmittance. Due to the broad spectral transmission of such interference filters compared to the internal mode spacing of blue laser diodes, an additional locking scheme, based on H\"ansch-Couillaud locking to a cavity, has been added to improve the stability. Read More

2016Nov
Authors: K. Akiba1, M. Akbiyik2, M. Albrow3, M. Arneodo4, V. Avati5, J. Baechler6, O. Villalobos Baillie7, P. Bartalini8, J. Bartels9, S. Baur10, C. Baus11, W. Beaumont12, U. Behrens13, D. Berge14, M. Berretti15, E. Bossini16, R. Boussarie17, S. Brodsky18, M. Broz19, M. Bruschi20, P. Bussey21, W. Byczynski22, J. C. Cabanillas Noris23, E. Calvo Villar24, A. Campbell25, F. Caporale26, W. Carvalho27, G. Chachamis28, E. Chapon29, C. Cheshkov30, J. Chwastowski31, R. Ciesielski32, D. Chinellato33, A. Cisek34, V. Coco35, P. Collins36, J. G. Contreras37, B. Cox38, D. de Jesus Damiao39, P. Davis40, M. Deile41, D. D'Enterria42, D. Druzhkin43, B. Ducloué44, R. Dumps45, R. Dzhelyadin46, P. Dziurdzia47, M. Eliachevitch48, P. Fassnacht49, F. Ferro50, S. Fichet51, D. Figueiredo52, B. Field53, D. Finogeev54, R. Fiore55, J. Forshaw56, A. Gago Medina57, M. Gallinaro58, A. Granik59, G. von Gersdorff60, S. Giani61, K. Golec-Biernat62, V. P. Goncalves63, P. Göttlicher64, K. Goulianos65, J. -Y. Grosslord66, L. A. Harland-Lang67, H. Van Haevermaet68, M. Hentschinski69, R. Engel70, G. Herrera Corral71, J. Hollar72, L. Huertas73, D. Johnson74, I. Katkov75, O. Kepka76, M. Khakzad77, L. Kheyn78, V. Khachatryan79, V. A. Khoze80, S. Klein81, M. van Klundert82, F. Krauss83, A. Kurepin84, N. Kurepin85, K. Kutak86, E. Kuznetsova87, G. Latino88, P. Lebiedowicz89, B. Lenzi90, E. Lewandowska91, S. Liu92, A. Luszczak93, M. Luszczak94, J. D. Madrigal95, M. Mangano96, Z. Marcone97, C. Marquet98, A. D. Martin99, T. Martin100, M. I. Martinez Hernandez101, C. Martins102, C. Mayer103, R. Mc Nulty104, P. Van Mechelen105, R. Macula106, E. Melo da Costa107, T. Mertzimekis108, C. Mesropian109, M. Mieskolainen110, N. Minafra111, I. L. Monzon112, L. Mundim113, B. Murdaca114, M. Murray115, H. Niewiadowski116, J. Nystrand117, E. G. de Oliveira118, R. Orava119, S. Ostapchenko120, K. Osterberg121, A. Panagiotou122, A. Papa123, R. Pasechnik124, T. Peitzmann125, L. A. Perez Moreno126, T. Pierog127, J. Pinfold128, M. Poghosyan129, M. E. Pol130, W. Prado131, V. Popov132, M. Rangel133, A. Reshetin134, J. -P. Revol135, M. Rijssenbeek136, M. Rodriguez137, B. Roland138, C. Royon139, M. Ruspa140, M. Ryskin141, A. Sabio Vera142, G. Safronov143, T. Sako144, H. Schindler145, D. Salek146, K. Safarik147, M. Saimpert148, A. Santoro149, R. Schicker150, J. Seger151, S. Sen152, A. Shabanov153, W. Schafer154, G. Gil Da Silveira155, P. Skands156, R. Soluk157, A. van Spilbeeck158, R. Staszewski159, S. Stevenson160, W. J. Stirling161, M. Strikman162, A. Szczurek163, L. Szymanowski164, J. D. Tapia Takaki165, M. Tasevsky166, K. Taesoo167, C. Thomas168, S. R. Torres169, A. Tricomi170, M. Trzebinski171, D. Tsybychev172, N. Turini173, R. Ulrich174, E. Usenko175, J. Varela176, M. Lo Vetere177, A. Villatoro Tello178, A. Vilela Pereira179, D. Volyanskyy180, S. Wallon181, G. Wilkinson182, H. Wöhrmann183, K. C. Zapp184, Y. Zoccarato185
Affiliations: 1LHC Forward Physics Working Group, 2LHC Forward Physics Working Group, 3LHC Forward Physics Working Group, 4LHC Forward Physics Working Group, 5LHC Forward Physics Working Group, 6LHC Forward Physics Working Group, 7LHC Forward Physics Working Group, 8LHC Forward Physics Working Group, 9LHC Forward Physics Working Group, 10LHC Forward Physics Working Group, 11LHC Forward Physics Working Group, 12LHC Forward Physics Working Group, 13LHC Forward Physics Working Group, 14LHC Forward Physics Working Group, 15LHC Forward Physics Working Group, 16LHC Forward Physics Working Group, 17LHC Forward Physics Working Group, 18LHC Forward Physics Working Group, 19LHC Forward Physics Working Group, 20LHC Forward Physics Working Group, 21LHC Forward Physics Working Group, 22LHC Forward Physics Working Group, 23LHC Forward Physics Working Group, 24LHC Forward Physics Working Group, 25LHC Forward Physics Working Group, 26LHC Forward Physics Working Group, 27LHC Forward Physics Working Group, 28LHC Forward Physics Working Group, 29LHC Forward Physics Working Group, 30LHC Forward Physics Working Group, 31LHC Forward Physics Working Group, 32LHC Forward Physics Working Group, 33LHC Forward Physics Working Group, 34LHC Forward Physics Working Group, 35LHC Forward Physics Working Group, 36LHC Forward Physics Working Group, 37LHC Forward Physics Working Group, 38LHC Forward Physics Working Group, 39LHC Forward Physics Working Group, 40LHC Forward Physics Working Group, 41LHC Forward Physics Working Group, 42LHC Forward Physics Working Group, 43LHC Forward Physics Working Group, 44LHC Forward Physics Working Group, 45LHC Forward Physics Working Group, 46LHC Forward Physics Working Group, 47LHC Forward Physics Working Group, 48LHC Forward Physics Working Group, 49LHC Forward Physics Working Group, 50LHC Forward Physics Working Group, 51LHC Forward Physics Working Group, 52LHC Forward Physics Working Group, 53LHC Forward Physics Working Group, 54LHC Forward Physics Working Group, 55LHC Forward Physics Working Group, 56LHC Forward Physics Working Group, 57LHC Forward Physics Working Group, 58LHC Forward Physics Working Group, 59LHC Forward Physics Working Group, 60LHC Forward Physics Working Group, 61LHC Forward Physics Working Group, 62LHC Forward Physics Working Group, 63LHC Forward Physics Working Group, 64LHC Forward Physics Working Group, 65LHC Forward Physics Working Group, 66LHC Forward Physics Working Group, 67LHC Forward Physics Working Group, 68LHC Forward Physics Working Group, 69LHC Forward Physics Working Group, 70LHC Forward Physics Working Group, 71LHC Forward Physics Working Group, 72LHC Forward Physics Working Group, 73LHC Forward Physics Working Group, 74LHC Forward Physics Working Group, 75LHC Forward Physics Working Group, 76LHC Forward Physics Working Group, 77LHC Forward Physics Working Group, 78LHC Forward Physics Working Group, 79LHC Forward Physics Working Group, 80LHC Forward Physics Working Group, 81LHC Forward Physics Working Group, 82LHC Forward Physics Working Group, 83LHC Forward Physics Working Group, 84LHC Forward Physics Working Group, 85LHC Forward Physics Working Group, 86LHC Forward Physics Working Group, 87LHC Forward Physics Working Group, 88LHC Forward Physics Working Group, 89LHC Forward Physics Working Group, 90LHC Forward Physics Working Group, 91LHC Forward Physics Working Group, 92LHC Forward Physics Working Group, 93LHC Forward Physics Working Group, 94LHC Forward Physics Working Group, 95LHC Forward Physics Working Group, 96LHC Forward Physics Working Group, 97LHC Forward Physics Working Group, 98LHC Forward Physics Working Group, 99LHC Forward Physics Working Group, 100LHC Forward Physics Working Group, 101LHC Forward Physics Working Group, 102LHC Forward Physics Working Group, 103LHC Forward Physics Working Group, 104LHC Forward Physics Working Group, 105LHC Forward Physics Working Group, 106LHC Forward Physics Working Group, 107LHC Forward Physics Working Group, 108LHC Forward Physics Working Group, 109LHC Forward Physics Working Group, 110LHC Forward Physics Working Group, 111LHC Forward Physics Working Group, 112LHC Forward Physics Working Group, 113LHC Forward Physics Working Group, 114LHC Forward Physics Working Group, 115LHC Forward Physics Working Group, 116LHC Forward Physics Working Group, 117LHC Forward Physics Working Group, 118LHC Forward Physics Working Group, 119LHC Forward Physics Working Group, 120LHC Forward Physics Working Group, 121LHC Forward Physics Working Group, 122LHC Forward Physics Working Group, 123LHC Forward Physics Working Group, 124LHC Forward Physics Working Group, 125LHC Forward Physics Working Group, 126LHC Forward Physics Working Group, 127LHC Forward Physics Working Group, 128LHC Forward Physics Working Group, 129LHC Forward Physics Working Group, 130LHC Forward Physics Working Group, 131LHC Forward Physics Working Group, 132LHC Forward Physics Working Group, 133LHC Forward Physics Working Group, 134LHC Forward Physics Working Group, 135LHC Forward Physics Working Group, 136LHC Forward Physics Working Group, 137LHC Forward Physics Working Group, 138LHC Forward Physics Working Group, 139LHC Forward Physics Working Group, 140LHC Forward Physics Working Group, 141LHC Forward Physics Working Group, 142LHC Forward Physics Working Group, 143LHC Forward Physics Working Group, 144LHC Forward Physics Working Group, 145LHC Forward Physics Working Group, 146LHC Forward Physics Working Group, 147LHC Forward Physics Working Group, 148LHC Forward Physics Working Group, 149LHC Forward Physics Working Group, 150LHC Forward Physics Working Group, 151LHC Forward Physics Working Group, 152LHC Forward Physics Working Group, 153LHC Forward Physics Working Group, 154LHC Forward Physics Working Group, 155LHC Forward Physics Working Group, 156LHC Forward Physics Working Group, 157LHC Forward Physics Working Group, 158LHC Forward Physics Working Group, 159LHC Forward Physics Working Group, 160LHC Forward Physics Working Group, 161LHC Forward Physics Working Group, 162LHC Forward Physics Working Group, 163LHC Forward Physics Working Group, 164LHC Forward Physics Working Group, 165LHC Forward Physics Working Group, 166LHC Forward Physics Working Group, 167LHC Forward Physics Working Group, 168LHC Forward Physics Working Group, 169LHC Forward Physics Working Group, 170LHC Forward Physics Working Group, 171LHC Forward Physics Working Group, 172LHC Forward Physics Working Group, 173LHC Forward Physics Working Group, 174LHC Forward Physics Working Group, 175LHC Forward Physics Working Group, 176LHC Forward Physics Working Group, 177LHC Forward Physics Working Group, 178LHC Forward Physics Working Group, 179LHC Forward Physics Working Group, 180LHC Forward Physics Working Group, 181LHC Forward Physics Working Group, 182LHC Forward Physics Working Group, 183LHC Forward Physics Working Group, 184LHC Forward Physics Working Group, 185LHC Forward Physics Working Group

The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Read More

The recent LHCb data for exclusive $J/\psi$ peripheral production at 13 TeV motivate an improved `NLO' analysis to estimate the gluon distribution at low $x$ in which we re-calculate the rapidity gap survival factors and use a more precise expression for the photon flux. We comment on the difference between the $k_T$ and collinear factorization approaches. Read More

We study the acylindrical hyperbolicity of groups acting by isometries on CAT(0) cube complexes, and obtain simple criteria formulated in terms of stabilisers for the action. Namely, we show that a group acting essentially and non-elementarily on a finite dimensional irreducible CAT(0) cube complex is acylindrically hyperbolic if there exist two hyperplanes whose stabilisers intersect along a finite subgroup. We also give further conditions on the geometry of the complex so that the result holds if we only require the existence of a single pair of points whose stabilisers intersect along a finite subgroup. Read More

In this paper, we propose a new data based model for influence maximization in online social networks. We use the theory of belief functions to overcome the data imperfection problem. Besides, the proposed model searches to detect influencer users that adopt a positive opinion about the product, the idea, etc, to be propagated. Read More

The `optimal' factorization scale $\mu_0$ is calculated for open heavy quark production. We find that the optimal value is $\mu_F=\mu_0\simeq 0.85\sqrt{p^2_T+m_Q^2} $; a choice which allows us to resum the double-logarithmic, $(\alpha_s\ln\mu^2_F\ln(1/x))^n$ corrections (enhanced at LHC energies by large values of $\ln(1/x)$) and to move them into the incoming parton distributions, PDF$(x,\mu_0^2)$. Read More

We briefly discuss some of the developments since the publication of the MMHT14 parton distributions. In particular we explore the impact of recent LHC data for $W^\pm,Z$ and $t\bar{t}$ production, and perform a preliminary new analysis including these data. In this re-fit (which we tentatively call `MMHT16') there are few changes of significance in the central values of the PDFs, but some data reduce the uncertainties, mainly in the strange and valence quark distributions. Read More

The fact that not all quantum observables are jointly measurable is one of the major differences between quantum and classical theory. In the former, non-commuting observables can only be simultaneously measured with limited precision. We report on an experimental implementation of such a simultaneous measurement of two non-commuting observables based on the framework of weak von Neumann measurements. Read More

2016Oct
Authors: PANDA Collaboration, B. Singh, W. Erni, B. Krusche, M. Steinacher, N. Walford, H. Liu, Z. Liu, B. Liu, X. Shen, C. Wang, J. Zhao, M. Albrecht, T. Erlen, M. Fink, F. H. Heinsius, T. Held, T. Holtmann, S. Jasper, I. Keshk, H. Koch, B. Kopf, M. Kuhlmann, M. Kümmel, S. Leiber, M. Mikirtychyants, P. Musiol, A. Mustafa, M. Pelizäus, J. Pychy, M. Richter, C. Schnier, T. Schröder, C. Sowa, M. Steinke, T. Triffterer, U. Wiedner, M. Ball, R. Beck, C. Hammann, B. Ketzer, M. Kube, P. Mahlberg, M. Rossbach, C. Schmidt, R. Schmitz, U. Thoma, M. Urban, D. Walther, C. Wendel, A. Wilson, A. Bianconi, M. Bragadireanu, M. Caprini, D. Pantea, B. Patel, W. Czyzycki, M. Domagala, G. Filo, J. Jaworowski, M. Krawczyk, E. Lisowski, F. Lisowski, M. Michałek, P. Poznański, J. Płażek, K. Korcyl, A. Kozela, P. Kulessa, P. Lebiedowicz, K. Pysz, W. Schäfer, A. Szczurek, T. Fiutowski, M. Idzik, B. Mindur, D. Przyborowski, K. Swientek, J. Biernat, B. Kamys, S. Kistryn, G. Korcyl, W. Krzemien, A. Magiera, P. Moskal, A. Pyszniak, Z. Rudy, P. Salabura, J. Smyrski, P. Strzempek, A. Wronska, I. Augustin, R. Böhm, I. Lehmann, D. Nicmorus Marinescu, L. Schmitt, V. Varentsov, M. Al-Turany, A. Belias, H. Deppe, N. Divani Veis, R. Dzhygadlo, A. Ehret, H. Flemming, A. Gerhardt, K. Götzen, A. Gromliuk, L. Gruber, R. Karabowicz, R. Kliemt, M. Krebs, U. Kurilla, D. Lehmann, S. Löchner, J. Lühning, U. Lynen, H. Orth, M. Patsyuk, K. Peters, T. Saito, G. Schepers, C. J. Schmidt, C. Schwarz, J. Schwiening, A. Täschner, M. Traxler, C. Ugur, B. Voss, P. Wieczorek, A. Wilms, M. Zühlsdorf, V. Abazov, G. Alexeev, V. A. Arefiev, V. Astakhov, M. Yu. Barabanov, B. V. Batyunya, Y. Davydov, V. Kh. Dodokhov, A. Efremov, A. Fechtchenko, A. G. Fedunov, A. Galoyan, S. Grigoryan, E. K. Koshurnikov, Y. Yu. Lobanov, V. I. Lobanov, A. F. Makarov, L. V. Malinina, V. Malyshev, A. G. Olshevskiy, E. Perevalova, A. A. Piskun, T. Pocheptsov, G. Pontecorvo, V. Rodionov, Y. Rogov, R. Salmin, A. Samartsev, M. G. Sapozhnikov, G. Shabratova, N. B. Skachkov, A. N. Skachkova, E. A. Strokovsky, M. Suleimanov, R. Teshev, V. Tokmenin, V. Uzhinsky, A. Vodopianov, S. A. Zaporozhets, N. I. Zhuravlev, A. Zinchenko, A. G. Zorin, D. Branford, D. Glazier, D. Watts, M. Böhm, A. Britting, W. Eyrich, A. Lehmann, M. Pfaffinger, F. Uhlig, S. Dobbs, K. Seth, A. Tomaradze, T. Xiao, D. Bettoni, V. Carassiti, A. Cotta Ramusino, P. Dalpiaz, A. Drago, E. Fioravanti, I. Garzia, M. Savrie, V. Akishina, I. Kisel, G. Kozlov, M. Pugach, M. Zyzak, P. Gianotti, C. Guaraldo, V. Lucherini, A. Bersani, G. Bracco, M. Macri, R. F. Parodi, K. Biguenko, K. T. Brinkmann, V. Di Pietro, S. Diehl, V. Dormenev, P. Drexler, M. Düren, E. Etzelmüller, M. Galuska, E. Gutz, C. Hahn, A. Hayrapetyan, M. Kesselkaul, W. Kühn, T. Kuske, J. S. Lange, Y. Liang, V. Metag, M. Moritz, M. Nanova, S. Nazarenko, R. Novotny, T. Quagli, S. Reiter, A. Riccardi, J. Rieke, C. Rosenbaum, M. Schmidt, R. Schnell, H. Stenzel, U. Thöring, T. Ullrich, M. N. Wagner, T. Wasem, B. Wohlfahrt, H. G. Zaunick, E. Tomasi-Gustafsson, D. Ireland, G. Rosner, B. Seitz, P. N. Deepak, A. Kulkarni, A. Apostolou, M. Babai, M. Kavatsyuk, P. J. Lemmens, M. Lindemulder, H. Loehner, J. Messchendorp, P. Schakel, H. Smit, M. Tiemens, J. C. van der Weele, R. Veenstra, S. Vejdani, K. Dutta, K. Kalita, A. Kumar, A. Roy, H. Sohlbach, M. Bai, L. Bianchi, M. Büscher, L. Cao, A. Cebulla, R. Dosdall, A. Gillitzer, F. Goldenbaum, D. Grunwald, A. Herten, Q. Hu, G. Kemmerling, H. Kleines, A. Lai, A. Lehrach, R. Nellen, H. Ohm, S. Orfanitski, D. Prasuhn, E. Prencipe, J. Pütz, J. Ritman, S. Schadmand, T. Sefzick, V. Serdyuk, G. Sterzenbach, T. Stockmanns, P. Wintz, P. Wüstner, H. Xu, A. Zambanini, S. Li, Z. Li, Z. Sun, H. Xu, V. Rigato, L. Isaksson, P. Achenbach, O. Corell, A. Denig, M. Distler, M. Hoek, A. Karavdina, W. Lauth, Z. Liu, H. Merkel, U. Müller, J. Pochodzalla, S. Sanchez, S. Schlimme, C. Sfienti, M. Thiel, H. Ahmadi, S. Ahmed, S. Bleser, L. Capozza, M. Cardinali, A. Dbeyssi, M. Deiseroth, F. Feldbauer, M. Fritsch, B. Fröhlich, D. Kang, D. Khaneft, R. Klasen, H. H. Leithoff, D. Lin, F. Maas, S. Maldaner, M. Martínez, M. Michel, M. C. Mora Espí, C. Morales Morales, C. Motzko, F. Nerling, O. Noll, S. Pflüger, A. Pitka, D. Rodríguez Piñeiro, A. Sanchez-Lorente, M. Steinen, R. Valente, T. Weber, M. Zambrana, I. Zimmermann, A. Fedorov, M. Korjik, O. Missevitch, A. Boukharov, O. Malyshev, I. Marishev, V. Balanutsa, P. Balanutsa, V. Chernetsky, A. Demekhin, A. Dolgolenko, P. Fedorets, A. Gerasimov, V. Goryachev, V. Chandratre, V. Datar, D. Dutta, V. Jha, H. Kumawat, A. K. Mohanty, A. Parmar, B. Roy, G. Sonika, C. Fritzsch, S. Grieser, A. K. Hergemöller, B. Hetz, N. Hüsken, A. Khoukaz, J. P. Wessels, K. Khosonthongkee, C. Kobdaj, A. Limphirat, P. Srisawad, Y. Yan, A. Yu. Barnyakov, M. Barnyakov, K. Beloborodov, V. E. Blinov, V. S. Bobrovnikov, I. A. Kuyanov, K. Martin, A. P. Onuchin, S. Serednyakov, A. Sokolov, Y. Tikhonov, A. E. Blinov, S. Kononov, E. A. Kravchenko, E. Atomssa, R. Kunne, B. Ma, D. Marchand, B. Ramstein, J. van de Wiele, Y. Wang, G. Boca, S. Costanza, P. Genova, P. Montagna, A. Rotondi, V. Abramov, N. Belikov, S. Bukreeva, A. Davidenko, A. Derevschikov, Y. Goncharenko, V. Grishin, V. Kachanov, V. Kormilitsin, A. Levin, Y. Melnik, N. Minaev, V. Mochalov, D. Morozov, L. Nogach, S. Poslavskiy, A. Ryazantsev, S. Ryzhikov, P. Semenov, I. Shein, A. Uzunian, A. Vasiliev, A. Yakutin, U. Roy, B. Yabsley, S. Belostotski, G. Gavrilov, A. Izotov, S. Manaenkov, O. Miklukho, D. Veretennikov, A. Zhdanov, T. Bäck, B. Cederwall, K. Makonyi, M. Preston, P. E. Tegner, D. Wölbing, A. K. Rai, S. Godre, D. Calvo, S. Coli, P. De Remigis, A. Filippi, G. Giraudo, S. Lusso, G. Mazza, M. Mignone, A. Rivetti, R. Wheadon, A. Amoroso, M. P. Bussa, L. Busso, F. De Mori, M. Destefanis, L. Fava, L. Ferrero, M. Greco, J. Hu, L. Lavezzi, M. Maggiora, G. Maniscalco, S. Marcello, S. Sosio, S. Spataro, F. Balestra, F. Iazzi, R. Introzzi, A. Lavagno, J. Olave, R. Birsa, F. Bradamante, A. Bressan, A. Martin, H. Calen, W. Ikegami Andersson, T. Johansson, A. Kupsc, P. Marciniewski, M. Papenbrock, J. Pettersson, K. Schönning, M. Wolke, B. Galnander, J. Diaz, V. Pothodi Chackara, A. Chlopik, G. Kesik, D. Melnychuk, B. Slowinski, A. Trzcinski, M. Wojciechowski, S. Wronka, B. Zwieglinski, P. Bühler, J. Marton, D. Steinschaden, K. Suzuki, E. Widmann, J. Zmeskal, K. M. Semenov-Tian-Shansky

The exclusive charmonium production process in $\bar{p}p$ annihilation with an associated $\pi^0$ meson $\bar{p}p\to J/\psi\pi^0$ is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the $J/\psi\to e^+e^-$ decay channel with the PANDA (AntiProton ANnihilation at DArmstadt) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the $\bar{p}p\to\pi^+\pi^-\pi^0$ and $\bar{p}p\to J/\psi\pi^0\pi^0$ reactions are performed with PandaRoot, the simulation and analysis software framework of the PANDA experiment. Read More

The perturbative QCD expansion for $J/\psi$ photoproduction appears to be unstable: the NLO correction is large (and of opposite sign) to the LO contribution. Moreover, the predictions are very sensitive to the choice of factorization and renormalization scales. Here we show that perturbative stability is greatly improved by imposing a $`Q_0$ cut' on the NLO coefficient functions; a cut which is required to avoid double counting. Read More

Different variants of a Bell inequality, such as CHSH and CH, are known to be equivalent when evaluated on nonsignaling outcome probability distributions. However, in experimental setups, the outcome probability distributions are estimated using a finite number of samples. Therefore the nonsignaling conditions are only approximately satisfied and the robustness of the violation depends on the chosen inequality variant. Read More

We address the question as to whether data for J/\psi mesons produced exclusively in the forward direction at the LHC can be used in global parton analyses (based on collinear factorization) to pin down the low x gluon PDF. We show that it may be possible to overcome the problems that (i) the process is described by a skewed or Generalized Parton Distribution (GPD), (ii) it is very sensitive to the choice of factorization scale and (iii) there is bad LO, NLO,.. Read More

Crowdsourcing platforms enable to propose simple human intelligence tasks to a large number of participants who realise these tasks. The workers often receive a small amount of money or the platforms include some other incentive mechanisms, for example they can increase the workers reputation score, if they complete the tasks correctly. We address the problem of identifying experts among participants, that is, workers, who tend to answer the questions correctly. Read More

2016Sep
Authors: C. Adolph, M. Aghasyan, R. Akhunzyanov, M. G. Alexeev, G. D. Alexeev, A. Amoroso, V. Andrieux, N. V. Anfimov, V. Anosov, K. Augsten, W. Augustyniak, A. Austregesilo, C. D. R. Azevedo, B. Badelek, F. Balestra, M. Ball, J. Barth, R. Beck, Y. Bedfer, J. Bernhard, K. Bicker, E. R. Bielert, R. Birsa, M. Bodlak, P. Bordalo, F. Bradamante, C. Braun, A. Bressan, M. Buechele, W. -C. Chang, C. Chatterjee, M. Chiosso, I. Choi, S. -U. Chung, A. Cicuttin, M. L. Crespo, Q. Curiel, S. Dalla Torre, S. S. Dasgupta, S. Dasgupta, O. Yu. Denisov, L. Dhara, S. V. Donskov, N. Doshita, Ch. Dreisbach, V. Duic, W. Duennweber, M. Dziewiecki, A. Efremov, P. D. Eversheim, W. Eyrich, M. Faessler, A. Ferrero, M. Finger, M. Finger jr., H. Fischer, C. Franco, N. du Fresne von Hohenesche, J. M. Friedrich, V. Frolov, E. Fuchey, F. Gautheron, O. P. Gavrichtchouk, S. Gerassimov, J. Giarra, F. Giordano, I. Gnesi, M. Gorzellik, S. Grabmueller, A. Grasso, M. Grosse Perdekamp, B. Grube, T. Grussenmeyer, A. Guskov, F. Haas, D. Hahne, G. Hamar, D. von Harrach, F. H. Heinsius, R. Heitz, F. Herrmann, N. Horikawa, N. d'Hose, C. -Y. Hsieh, S. Huber, S. Ishimoto, A. Ivanov, Yu. Ivanshin, T. Iwata, V. Jary, R. Joosten, P. Joerg, E. Kabuss, B. Ketzer, G. V. Khaustov, Yu. A. Khokhlov, Yu. Kisselev, F. Klein, K. Klimaszewski, J. H. Koivuniemi, V. N. Kolosov, K. Kondo, K. Koenigsmann, I. Konorov, V. F. Konstantinov, A. M. Kotzinian, O. M. Kouznetsov, M. Kraemer, P. Kremser, F. Krinner, Z. V. Kroumchtein, Y. Kulinich, F. Kunne, K. Kurek, R. P. Kurjata, A. A. Lednev, A. Lehmann, M. Levillain, S. Levorato, Y. -S. Lian, J. Lichtenstadt, R. Longo, A. Maggiora, A. Magnon, N. Makins, N. Makke, G. K. Mallot, B. Marianski, A. Martin, J. Marzec, J. Matousek, H. Matsuda, T. Matsuda, G. V. Meshcheryakov, M. Meyer, W. Meyer, Yu. V. Mikhailov, M. Mikhasenko, E. Mitrofanov, N. Mitrofanov, Y. Miyachi, A. Nagaytsev, F. Nerling, D. Neyret, J. Novy, W. -D. Nowak, G. Nukazuka, A. S. Nunes, A. G. Olshevsky, I. Orlov, M. Ostrick, D. Panzieri, B. Parsamyan, S. Paul, J. -C. Peng, F. Pereira, M. Pesek, D. V. Peshekhonov, N. Pierre, S. Platchkov, J. Pochodzalla, V. A. Polyakov, J. Pretz, M. Quaresma, C. Quintans, S. Ramos, C. Regali, G. Reicherz, C. Riedl, M. Roskot, N. S. Rossiyskaya, D. I. Ryabchikov, A. Rybnikov, A. Rychter, R. Salac, V. D. Samoylenko, A. Sandacz, C. Santos, S. Sarkar, I. A. Savin, T. Sawada, G. Sbrizzai, P. Schiavon, K. Schmidt, H. Schmieden, K. Schoenning, E. Seder, A. Selyunin, L. Silva, L. Sinha, S. Sirtl, M. Slunecka, J. Smolik, A. Srnka, D. Steffen, M. Stolarski, O. Subrt, M. Sulc, H. Suzuki, A. Szabelski, T. Szameitat, P. Sznajder, S. Takekawa, M. Tasevsky, S. Tessaro, F. Tessarotto, F. Thibaud, A. Thiel, F. Tosello, V. Tskhay, S. Uhl, J. Veloso, M. Virius, J. Vondra, S. Wallner, T. Weisrock, M. Wilfert, J. ter Wolbeek, K. Zaremba, P. Zavada, M. Zavertyaev, E. Zemlyanichkina, N. Zhuravlev, M. Ziembicki, A. Zink

Proton transverse-spin azimuthal asymmetries are extracted from the COMPASS 2010 semi-inclusive hadron measurements in deep inelastic muon-nucleon scattering in those four regions of the photon virtuality $Q^2$, which correspond to the four regions of the di-muon mass $\sqrt{Q^2}$ used in the ongoing analysis of the COMPASS Drell-Yan measurements. This allows for a future direct comparison of the nucleon transverse-momentum-dependent parton distribution functions extracted from these two alternative measurements. Various two-dimensional kinematic dependences are presented for the azimuthal asymmetries induced by the Sivers transverse-momentum-dependent parton distribution function. Read More

2016Sep
Authors: C. Adolph, M. Aghasyan, R. Akhunzyanov, M. G. Alexeev, G. D. Alexeev, A. Amoroso, V. Andrieux, N. V. Anfimov, V. Anosov, K. Augsten, W. Augustyniak, A. Austregesilo, C. D. R. Azevedo, B. Badelek, F. Balestra, M. Ball, J. Barth, R. Beck, Y. Bedfer, J. Bernhard, K. Bicker, E. R. Bielert, R. Birsa, M. Bodlak, P. Bordalo, F. Bradamante, C. Braun, A. Bressan, M. Buechele, W. -C. Chang, C. Chatterjee, M. Chiosso, I. Choi, S. -U. Chung, A. Cicuttin, M. L. Crespo, Q. Curiel, S. Dalla Torre, S. S. Dasgupta, S. Dasgupta, O. Yu. Denisov, L. Dhara, S. V. Donskov, N. Doshita, Ch. Dreisbach, V. Duic, W. Duennweber, M. Dziewiecki, A. Efremov, P. D. Eversheim, W. Eyrich, M. Faessler, A. Ferrero, M. Finger, M. Finger jr., H. Fischer, C. Franco, N. du Fresne von Hohenesche, J. M. Friedrich, V. Frolov, E. Fuchey, F. Gautheron, O. P. Gavrichtchouk, S. Gerassimov, J. Giarra, F. Giordano, I. Gnesi, M. Gorzellik, S. Grabmueller, A. Grasso, M. Grosse Perdekamp, B. Grube, T. Grussenmeyer, A. Guskov, F. Haas, D. Hahne, G. Hamar, D. von Harrach, F. H. Heinsius, R. Heitz, F. Herrmann, N. Horikawa, N. d'Hose, C. -Y. Hsieh, S. Huber, S. Ishimoto, A. Ivanov, Yu. Ivanshin, T. Iwata, V. Jary, R. Joosten, P. Joerg, E. Kabuss, B. Ketzer, G. V. Khaustov, Yu. A. Khokhlov, Yu. Kisselev, F. Klein, K. Klimaszewski, J. H. Koivuniemi, V. N. Kolosov, K. Kondo, K. Koenigsmann, I. Konorov, V. F. Konstantinov, A. M. Kotzinian, O. M. Kouznetsov, M. Kraemer, P. Kremser, F. Krinner, Z. V. Kroumchtein, Y. Kulinich, F. Kunne, K. Kurek, R. P. Kurjata, A. A. Lednev, A. Lehmann, M. Levillain, S. Levorato, Y. -S. Lian, J. Lichtenstadt, R. Longo, A. Maggiora, A. Magnon, N. Makins, N. Makke, G. K. Mallot, B. Marianski, A. Martin, J. Marzec, J. Matousek, H. Matsuda, T. Matsuda, G. V. Meshcheryakov, M. Meyer, W. Meyer, Yu. V. Mikhailov, M. Mikhasenko, E. Mitrofanov, N. Mitrofanov, Y. Miyachi, A. Nagaytsev, F. Nerling, D. Neyret, J. Novy, W. -D. Nowak, G. Nukazuka, A. S. Nunes, A. G. Olshevsky, I. Orlov, M. Ostrick, D. Panzieri, B. Parsamyan, S. Paul, J. -C. Peng, F. Pereira, M. Pesek, D. V. Peshekhonov, N. Pierre, S. Platchkov, J. Pochodzalla, V. A. Polyakov, J. Pretz, M. Quaresma, C. Quintans, S. Ramos, C. Regali, G. Reicherz, C. Riedl, M. Roskot, N. S. Rossiyskaya, D. I. Ryabchikov, A. Rybnikov, A. Rychter, R. Salac, V. D. Samoylenko, A. Sandacz, C. Santos, S. Sarkar, I. A. Savin, T. Sawada, G. Sbrizzai, P. Schiavon, K. Schmidt, H. Schmieden, K. Schoenning, E. Seder, A. Selyunin, L. Silva, L. Sinha, S. Sirtl, M. Slunecka, J. Smolik, A. Srnka, D. Steffen, M. Stolarski, O. Subrt, M. Sulc, H. Suzuki, A. Szabelski, T. Szameitat, P. Sznajder, S. Takekawa, M. Tasevsky, S. Tessaro, F. Tessarotto, F. Thibaud, A. Thiel, F. Tosello, V. Tskhay, S. Uhl, J. Veloso, M. Virius, J. Vondra, S. Wallner, T. Weisrock, M. Wilfert, J. ter Wolbeek, K. Zaremba, P. Zavada, M. Zavertyaev, E. Zemlyanichkina, N. Zhuravlev, M. Ziembicki, A. Zink

Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\phi$ is obtained by means of a five-parameter fitting function that besides a $\phi$-independent term includes four modulations predicted by theory: $\sin\phi$, $\sin 2 \phi$, $\sin 3\phi$ and $\cos\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. Read More

We explore an electroweak symmetry breaking (EWSB) scenario based on the mixture of a fundamental Higgs doublet and an SU(4)/Sp(4) composite pseudo-Nambu-Goldstone doublet -- a particular manifestation of bosonic technicolor/induced EWSB. Taking the fundamental Higgs mass parameter to be positive, EWSB is triggered by the mixing of the doublets. This setup has several attractive features and phenomenological consequences, which we highlight: i) Unlike traditional bosonic technicolor models, the hierarchy between $\Lambda_{\rm TC}$ and the electroweak scale depends on vacuum (mis)alignment and can be sizable, yielding an attractive framework for natural EWSB; ii) As the strong sector is based on SU(4)/Sp(4), a fundamental (UV-complete) description of the strong sector is possible, that is informed by the lattice; iii) The lightest vector resonances occur in the 10-plet, 5-plet and singlet of Sp(4). Read More

Inflation occurring at energy densities less than (10$^{14}$ GeV)$^4$ produces tensor perturbations too small to be measured by cosmological surveys. However, we show that it is possible to probe low scale inflation by measuring the mass of the inflaton at low energy experiments. Detection prospects and cosmological constraints are determined for low scale quartic hilltop models of inflation paired with a curvaton field, which imprints the spectrum of scalar perturbations observed in large scale structure and on the cosmic microwave background. Read More

2016Aug
Authors: C. Adolph, J. Agarwala, M. Aghasyan, R. Akhunzyanov, M. G. Alexeev, G. D. Alexeev, A. Amoroso, V. Andrieux, N. V. Anfimov, V. Anosov, K. Augsten, W. Augustyniak, A. Austregesilo, C. D. R. Azevedo, B. Badelek, F. Balestra, M. Ball, J. Barth, R. Beck, Y. Bedfer, J. Bernhard, K. Bicker, E. R. Bielert, R. Birsa, M. Bodlak, P. Bordalo, F. Bradamante, C. Braun, A. Bressan, M. Buechele, L. Capozza, W. -C. Chang, C. Chatterjee, M. Chiosso, I. Choi, S. -U. Chung, A. Cicuttin, M. L. Crespo, Q. Curiel, S. Dalla Torre, S. S. Dasgupta, S. Dasgupta, O. Yu. Denisov, L. Dhara, S. V. Donskov, N. Doshita, Ch. Dreisbach, V. Duic, W. Duennweber, M. Dziewiecki, A. Efremov, P. D. Eversheim, W. Eyrich, M. Faessler, A. Ferrero, M. Finger, M. Finger jr., H. Fischer, C. Franco, N. du Fresne von Hohenesche, J. M. Friedrich, V. Frolov, E. Fuchey, F. Gautheron, O. P. Gavrichtchouk, S. Gerassimov, F. Giordano, I. Gnesi, M. Gorzellik, S. Grabmueller, A. Grasso, M. Grosse Perdekamp, B. Grube, T. Grussenmeyer, A. Guskov, F. Haas, D. Hahne, G. Hamar, D. von Harrach, F. H. Heinsius, R. Heitz, F. Herrmann, N. Horikawa, N. d'Hose, C. -Y. Hsieh, S. Huber, S. Ishimoto, A. Ivanov, Yu. Ivanshin, T. Iwata, V. Jary, R. Joosten, P. Joeorg, E. Kabuss, B. Ketzer, G. V. Khaustov, Yu. A. Khokhlov, Yu. Kisselev, F. Klein, K. Klimaszewski, J. H. Koivuniemi, V. N. Kolosov, K. Kondo, K. Koenigsmann, I. Konorov, V. F. Konstantinov, A. M. Kotzinian, O. M. Kouznetsov, M. Kraemer, P. Kremser, F. Krinner, Z. V. Kroumchtein, Y. Kulinich, F. Kunne, K. Kurek, R. P. Kurjata, A. A. Lednev, A. Lehmann, M. Levillain, S. Levorato, Y. -S. Lian, J. Lichtenstadt, R. Longo, A. Maggiora, A. Magnon, N. Makins, N. Makke, G. K. Mallot, B. Marianski, A. Martin, J. Marzec, J. Matousek, H. Matsuda, T. Matsuda, G. V. Meshcheryakov, M. Meyer, W. Meyer, Yu. V. Mikhailov, M. Mikhasenko, E. Mitrofanov, N. Mitrofanov, Y. Miyachi, A. Nagaytsev, F. Nerling, D. Neyret, J. Novy, W. -D. Nowak, G. Nukazuka, A. S. Nunes, A. G. Olshevsky, I. Orlov, M. Ostrick, D. Panzieri, B. Parsamyan, S. Paul, J. -C. Peng, F. Pereira, M. Pesek, D. V. Peshekhonov, N. Pierre, S. Platchkov, J. Pochodzalla, V. A. Polyakov, J. Pretz, M. Quaresma, C. Quintans, S. Ramos, C. Regali, G. Reicherz, C. Riedl, M. Roskot, N. S. Rossiyskaya, D. I. Ryabchikov, A. Rybnikov, A. Rychter, R. Salac, V. D. Samoylenko, A. Sandacz, C. Santos, S. Sarkar, I. A. Savin, T. Sawada, G. Sbrizzai, P. Schiavon, K. Schmidt, H. Schmieden, K. Schoenning, E. Seder, A. Selyunin, L. Silva, L. Sinha, S. Sirtl, M. Slunecka, J. Smolik, A. Srnka, D. Steffen, M. Stolarski, O. Subrt, M. Sulc, H. Suzuki, A. Szabelski, T. Szameitat, P. Sznajder, S. Takekawa, M. Tasevsky, S. Tessaro, F. Tessarotto, F. Thibaud, A. Thiel, F. Tosello, V. Tskhay, S. Uhl, J. Veloso, M. Virius, J. Vondra, S. Wallner, T. Weisrock, M. Wilfert, R. Windmolders, J. ter Wolbeek, K. Zaremba, P. Zavada, M. Zavertyaev, E. Zemlyanichkina, N. Zhuravlev, M. Ziembicki, A. Zink

Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. Read More

At the tail of its velocity distribution, cold dark matter (DM) can annihilate at finite temperature to states heavier than itself. We explore the possibility that DM freezeout is dictated by these "forbidden annihilations" at the electroweak scale. Demanding that annihilation products be Standard Model particles, we find that for the forbidden mechanism to primarily set the DM relic abundance, DM must couple predominantly, if not solely, to top quarks. Read More

We discuss the potential to constrain the small-$x$ PDFs using the exclusive production of heavy vector mesons. The calculation of $J/\psi$ and $\Upsilon$ photoproduction at NLO in collinear factorisation is described. The different behaviour of the NLO corrections for $J/\psi$ and $\Upsilon$ is highlighted and we outline what might be expected from the inclusion of these processes in a PDF fit. Read More

There exist well motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the DM to up-scatter in terrestrial experiments into an excited state up to 550 keV heavier than the DM itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. Read More

In the task of community detection, there often exists some useful prior information. In this paper, a Semi-supervised clustering approach using a new Evidential Label Propagation strategy (SELP) is proposed to incorporate the domain knowledge into the community detection model. The main advantage of SELP is that it can take limited supervised knowledge to guide the detection process. Read More

One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side- channel attacks. To overcome this problem, researchers proposed an elegant "time-reversal" QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point- to-point QKD. Read More

We consider the time evolution of nearly degenerate two-state systems with an external interaction. Conditions in which full population transfer is possible when the two-states become degenerate are considered. A new variation of the coupled differential equations for the probability amplitudes suggests a possible singularity in the time evolution of the system. Read More

The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Read More

Community detection has attracted considerable attention crossing many areas as it can be used for discovering the structure and features of complex networks. With the increasing size of social networks in real world, community detection approaches should be fast and accurate. The Label Propagation Algorithm (LPA) is known to be one of the near-linear solutions and benefits of easy implementation, thus it forms a good basis for efficient community detection methods. Read More

2016Jun
Authors: C. Adolph, J. Agarwala, M. Aghasyan, R. Akhunzyanov, M. G. Alexeev, G. D. Alexeev, A. Amoroso, V. Andrieux, N. V. Anfimov, V. Anosov, W. Augustyniak, A. Austregesilo, C. D. R. Azevedo, B. Badelek, F. Balestra, J. Barth, R. Beck, Y. Bedfer, J. Bernhard, K. Bicker, E. R. Bielert, R. Birsa, J. Bisplinghoff, M. Bodlak, M. Boer, P. Bordalo, F. Bradamante, C. Braun, A. Bressan, M. Buechele, W. -C. Chang, C. Chatterjee, M. Chiosso, I. Choi, S. -U. Chung, A. Cicuttin, M. L. Crespo, Q. Curiel, S. Dalla Torre, S. S. Dasgupta, S. Dasgupta, O. Yu. Denisov, L. Dhara, S. V. Donskov, N. Doshita, V. Duic, W. Duennweber, M. Dziewiecki, A. Efremov, P. D. Eversheim, W. Eyrich, M. Faessler, A. Ferrero, M. Finger, M. Finger jr., H. Fischer, C. Franco, N. du Fresne von Hohenesche, J. M. Friedrich, V. Frolov, E. Fuchey, F. Gautheron, O. P. Gavrichtchouk, S. Gerassimov, F. Giordano, I. Gnesi, M. Gorzellik, S. Grabmueller, A. Grasso, M. Grosse Perdekamp, B. Grube, T. Grussenmeyer, A. Guskov, F. Haas, D. Hahne, D. von Harrach, R. Hashimoto, F. H. Heinsius, R. Heitz, F. Herrmann, F. Hinterberger, N. Horikawa, N. dHose, C. -Y. Hsieh, S. Huber, S. Ishimoto, A. Ivanov, Yu. Ivanshin, T. Iwata, R. Jahn, V. Jary, R. Joosten, P. Joerg, E. Kabuss, B. Ketzer, G. V. Khaustov, Yu. A. Khokhlov, Yu. Kisselev, F. Klein, K. Klimaszewski, J. H. Koivuniemi, V. N. Kolosov, K. Kondo, K. Koenigsmann, I. Konorov, V. F. Konstantinov, A. M. Kotzinian, O. M. Kouznetsov, M. Kraemer, P. Kremser, F. Krinner, Z. V. Kroumchtein, Y. Kulinich, F. Kunne, K. Kurek, R. P. Kurjata, A. A. Lednev, A. Lehmann, M. Levillain, S. Levorato, Y. -S. Lian, J. Lichtenstadt, R. Longo, A. Maggiora, A. Magnon, N. Makins, N. Makke, G. K. Mallot, C. Marchand, B. Marianski, A. Martin, J. Marzec, J. Matousek, H. Matsuda, T. Matsuda, G. V. Meshcheryakov, M. Meyer, W. Meyer, T. Michigami, Yu. V. Mikhailov, M. Mikhasenko, E. Mitrofanov, N. Mitrofanov, Y. Miyachi, P. Montuenga, A. Nagaytsev, F. Nerling, D. Neyret, V. I. Nikolaenko, J. Novy, W. -D. Nowak, G. Nukazuka, A. S. Nunes, A. G. Olshevsky, I. Orlov, M. Ostrick, D. Panzieri, B. Parsamyan, S. Paul, J. -C. Peng, F. Pereira, M. Pesek, D. V. Peshekhonov, N. Pierre, S. Platchkov, J. Pochodzalla, V. A. Polyakov, J. Pretz, M. Quaresma, C. Quintans, S. Ramos, C. Regali, G. Reicherz, C. Riedl, M. Roskot, D. I. Ryabchikov, A. Rybnikov, A. Rychter, R. Salac, V. D. Samoylenko, A. Sandacz, C. Santos, S. Sarkar, I. A. Savin, T. Sawada, G. Sbrizzai, P. Schiavon, K. Schmidt, H. Schmieden, K. Schoenning, S. Schopferer, E. Seder, A. Selyunin, O. Yu. Shevchenko, L. Silva, L. Sinha, S. Sirtl, M. Slunecka, J. Smolik, F. Sozzi, A. Srnka, D. Steffen, M. Stolarski, M. Sulc, H. Suzuki, A. Szabelski, T. Szameitat, P. Sznajder, S. Takekawa, M. Tasevsky, S. Tessaro, F. Tessarotto, F. Thibaud, F. Tosello, V. Tskhay, S. Uhl, J. Veloso, M. Virius, J. Vondra, S. Wallner, T. Weisrock, M. Wilfert, J. ter Wolbeek, K. Zaremba, P. Zavada, M. Zavertyaev, E. Zemlyanichkina, M. Ziembicki, A. Zink

Exclusive production of $\omega$ mesons was studied at the COMPASS experiment by scattering $160~\mathrm{GeV}/\mathit{c}$ muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality $1~(\mathrm{GeV}/\mathit{c})^2 < Q^2 < 10~(\mathrm{GeV}/\mathit{c})^2$, Bjorken scaling variable $0.003 < x_{\mathit{Bj}} < 0. Read More

The emergence of mobile applications to execute sensitive operations has brought a myriad of security threats to both enterprises and users. In order to benefit from the large potential in smartphones there is a need to manage the risks arising from threats, while maintaining an easy interface for the users. In this paper we investigate the use of Trusted Platform Model (TPM) 2. Read More

In the Internet of Things (IoT), heterogeneous devices connect to each other and to external systems to exchange data and provide services. Given the diversity of devices, it is becoming increasingly common to establish collaborative relationships between devices to provide composite services. However, due to the high degree of heterogeneity in the IoT context, one of the most significant challenges is to develop software applications that can run on a wide variety of devices and can communicate and collaborate with an even wider array of systems. Read More