# A. M. Teixeira - University of Porto

## Contact Details

NameA. M. Teixeira |
||

AffiliationUniversity of Porto |
||

CityPorto |
||

CountryPortugal |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (15) Mathematics - Probability (13) Physics - Materials Science (7) Physics - Soft Condensed Matter (5) Physics - Statistical Mechanics (4) High Energy Physics - Experiment (3) Physics - Chemical Physics (3) Mathematics - Optimization and Control (3) Physics - Biological Physics (2) Computer Science - Computational Complexity (2) General Relativity and Quantum Cosmology (2) Computer Science - Computational Engineering; Finance; and Science (2) Cosmology and Nongalactic Astrophysics (2) Quantitative Biology - Biomolecules (2) Physics - Strongly Correlated Electrons (1) Computer Science - Information Theory (1) Mathematics - Dynamical Systems (1) Mathematics - Numerical Analysis (1) Mathematics - Information Theory (1) Physics - Disordered Systems and Neural Networks (1) Physics - Mesoscopic Systems and Quantum Hall Effect (1) Physics - Computational Physics (1) High Energy Physics - Theory (1) Computer Science - Computer Science and Game Theory (1) Mathematics - Mathematical Physics (1) Mathematical Physics (1) Physics - Instrumentation and Detectors (1) |

## Publications Authored By A. M. Teixeira

Chitosan, a natural, cationic polysaccharide, may be a hydrocolloid strategic to formulate acidic food products, as it can act as both bio-functional and technofunctional constituent. Typically, acetic acid is used to disperse chitosan in aqueous media, but the use of this acid is limited in food formulations due to its flavor. In this study, chitosan was firstly dispersed (0. Read More

Chemical or enzymatic cross-linking of casein micelles (CMs) increases their stability against dissociating agents. In this paper, a comparative study of stability between native CMs and CMs cross-linked with genipin (CMs-GP) as a function of pH is described. Stability to temperature and ethanol were investigated in the pH range 2. Read More

If observed, charged lepton flavour violation is a clear sign of new physics - beyond the Standard Model minimally extended to accommodate neutrino oscillation data. After a brief review of several charged lepton flavour violation observables and their current experimental status, we consider distinct extensions of the Standard Model which could potentially give rise to observable signals, focusing on the case of models in which the mechanism of neutrino mass generation is the common source of neutral and charged lepton flavour violation. Read More

We revisit charged lepton flavour in-flight conversions, in which a beam of electrons or muons is directed onto a fixed target, $e + N \to \mu +N$, $e + N \to \tau +N$ and $\mu + N \to \tau +N$, focusing on elastic interactions with a nucleus $N$. After a general discussion of this observable, we carry a full phenomenological analysis in the framework of minimal Standard Model extensions via sterile neutrinos, with a strong emphasis on the r\^ole of the increasingly more stringent constraints arising from other (low-energy) charged lepton flavour violation observables. Despite the potential interest of this observable, in particular in the light of certain upcoming facilities with the capability of very intense lepton beams, our study suggests that due to current bounds on three-body decays ($\ell_i \to 3 \ell_j$) and $\mu-e$ conversion in Nuclei, the expected number of conversions in such a minimal framework is dramatically reduced. Read More

If observed, charged lepton flavour violation is a clear sign of new physics - beyond the Standard Model minimally extended to accommodate neutrino oscillation data. We briefly review several extensions of the Standard Model which could potentially give rise to observable signals, also emphasising the r\^ole of charged lepton flavour violation in probing such new physics models. Read More

[Abridged] If gravitation is to be described by a hybrid metric-Palatini $f(\mathcal{R})$ gravity theory there are a number of issues that ought to be examined in its context, including the question as to whether its equations allow homogeneous G\"odel-type solutions, which necessarily leads to violation of causality. Here, to look further into the potentialities and difficulties of $f(\mathcal{R})$ theories, we examine whether they admit G\"odel-type solutions for some physically well-motivated matter sources. We first show that under certain conditions on the matter sources the problem of finding out space-time homogeneous solutions in $f(\mathcal{R})$ theories reduces to the problem of determining solutions of this type in $f(R)$ gravity in the metric formalism. Read More

We consider critical oriented Bernoulli percolation on the square lattice $\mathbb{Z}^2$. We prove a Russo-Seymour-Welsh type result which allows us to derive several new results concerning the critical behavior: - We establish that the probability that the origin is connected to distance $n$ decays polynomially fast in $n$. - We prove that the critical cluster of the origin conditioned to survive to distance $n$ has a typical width $w_n$ satisfying $\epsilon n^{2/5} < w_n < n^{1-\epsilon}$ for some $\epsilon > 0$. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We study a detection problem in the following setting: On the one-dimensional integer lattice, at time zero, place nodes on each site independently with probability $\rho \in [0,1)$ and let them evolve as a simple symmetric exclusion process. At time zero, place a target at the origin. The target moves only at integer times, and can move to any site that is within distance $R$ from its current position. Read More

We define a continuum percolation model that provides a collection of random ellipses on the plane and study the behavior of the covered set and the vacant set, the one obtained by removing all ellipses. Our model generalizes a construction that appears implicitly in the Poisson cylinder model of Tykesson and Windisch. The ellipses model has a parameter $\alpha > 0$ associated with the tail decay of the major axis distribution; we only consider distributions $\rho$ satisfying $\rho[r, \infty) \asymp r^{-\alpha}$. Read More

We study the phase transition of random radii Poisson Boolean percolation: Around each point of a planar Poisson point process, we draw a disc of random radius, independently for each point. The behavior of this process is well understood when the radii are uniformly bounded from above. In this article, we investigate this process for unbounded (and possibly heavy tailed) radii distributions. Read More

In this paper, we investigate detectability and identifiability of attacks on linear dynamical systems that are subjected to external disturbances. We generalize a concept for a security index, which was previously introduced for static systems. The generalized index exactly quantifies the resources necessary for targeted attacks to be undetectable and unidentifiable in the presence of disturbances. Read More

A solid wooden cube fragments into pieces as we sequentially drill holes through it randomly. This seemingly straightforward observation encompasses deep and nontrivial geometrical and probabilistic behavior that is discussed here. Combining numerical simulations and rigorous results, we find off-critical scale-free behavior and a continuous transition at a critical density of holes that significantly differs from classical percolation. Read More

We discuss charged lepton flavour violating processes occurring in the presence of muonic atoms, such as muon-electron conversion in nuclei $\text{CR}(\mu -e, \text{ N})$, the (Coulomb enhanced) decay of muonic atoms into a pair of electrons BR($\mu^- e^- \to e^- e^-$, N), as well as Muonium conversion and decay, $\text{Mu}-\bar{\text{Mu}}$ and $\text{Mu}\to e^+ e^-$. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model. In this work, we consider minimal extensions of the Standard Model via the addition of sterile fermions, providing the corresponding complete analytical expressions for all the considered observables. Read More

A future high-luminosity $Z$-factory has the potential to investigate lepton flavour violation. Rare decays such as $Z \to \ell_1^\mp \ell_2^\pm$ can be complementary to low-energy (high-intensity) observables of lepton flavour violation. Here we consider two extensions of the Standard Model which add to its particle content one or more sterile neutrinos. Read More

In this paper we study percolation on a roughly transitive graph G with polynomial growth and isoperimetric dimension larger than one. For these graphs we are able to prove that p_c < 1, or in other words, that there exists a percolation phase. The main results of the article work for both dependent and independent percolation processes, since they are based on a quite robust renormalization technique. Read More

Herein, we used an electrospinning process to develop highly efficacious and hydrophobic coaxial nanofibers based on poly-cyclodextrin (polyCD) associated with poly(methacrylic acid) (PMAA) that combines polymeric and supramolecular features for modulating the release of the hydrophilic drug, propranolol hydrochloride (PROP). For this purpose, polyCD was synthesized and characterized, and its biocompatibility was assessed using fibroblast cytotoxicity tests. Moreover, the interactions between the guest PROP molecule and both polyCD and $\beta$CD were found to be spontaneous. Read More

We study the dynamics of two conservative lattice gas models on the infinite d-dimensional hypercubic lattice: the Activated Random Walks (ARW) and the Stochastic Sandpiles Model (SSM), introduced in the physics literature in the early nineties. Theoretical arguments and numerical analysis predicted that the ARW and SSM undergo a phase transition between an absorbing phase and an active phase as the initial density crosses a critical threshold. However a rigorous proof of the existence of an absorbing phase was known only for one-dimensional systems. Read More

A future high-luminosity $Z$-factory will offer the possibility to study rare $Z$ decays, as those leading to lepton flavour violating final states. Processes such as $Z \to \ell_1^\mp \ell_2^\pm$ are potentially complementary to low-energy (high-intensity) observables of lepton flavour violation. In this work we address the impact of new sterile fermions on lepton flavour violating $Z$ decays, focusing on potential searches at FCC-ee (TLEP), and taking into account experimental and observational constraints on the sterile states. Read More

In the presence of a light singlino-like LSP in the NMSSM, the missing transverse energy - MET - signature of squark/gluino production can be considerably reduced. Instead, a pair of Higgs bosons is produced in each event. We propose benchmark points for such scenarios, which differ in the squark and gluino masses, and in their decay cascades. Read More

For $d\ge 3$ we construct a new coupling of the trace left by a random walk on a large $d$-dimensional discrete torus with the random interlacements on $\mathbb Z^d$. This coupling has the advantage of working up to macroscopic subsets of the torus. As an application, we show a sharp phase transition for the diameter of the component of the vacant set on the torus containing a given point. Read More

In this paper we establish some relations between percolation on a given graph G and its geometry. Our main result shows that, if G has polynomial growth and satisfies what we call the local isoperimetric inequality of dimension d > 1, then p_c(G) < 1. This gives a partial answer to a question of Benjamini and Schramm. Read More

We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion, which was the analytical signal of the method. Read More

The effect of different ionic cosolutes (NaCl, Na$_2$SO$_4$, Li$_2$SO$_4$, NaSCN, Na$_2$[Fe(CN)5NO], and Na$_3$[Co(NO)$_6$]) on the interaction between sodium dodecyl sulfate (SDS) and poly(ethylene oxide) (PEO) was examined by small-angle X-ray scattering (SAXS) and isothermal titration calorimetric techniques. The critical aggregation concentration values (cac), the saturation concentration ($C_2$), the integral enthalpy change for aggregate formation ($\Delta H_{\mbox{agg}}$(int)) and the standard free energy change of micelle adsorption on the macromolecule chain ( $\Delta\Delta G_{\mbox{agg}}$) were derived from the calorimetric titration curves. In the presence of 1. Read More

The dynamics of swollen fractal networks (Rouse model) has been studied through computer simulations. The fluctuation-relaxation theorem was used instead of the usual Langevin approach to Brownian dynamics. We measured the equivalent of the mean square displacement $\langle \vec r^{\,2} \rangle$ and the coefficient of self-diffusion $D$ of two-and three-dimensional Sierpinski networks and of the two-dimensional percolation network. Read More

The study of protein interactions has generated great interest in the food industry. Therefore, research on new supramolecular structures shows promise. Supramolecular structures of the whey proteins {\alpha}-lactalbumin and glycomacropeptide were produced under varying heat treatments (25 to 75 {\deg}C) and acidic conditions (pH 3. Read More

Small angle neutron and x-ray scattering methods are used to investigate the structure of dilute suspensions of two different ferrofluid systems dispersed in soft polyacrylamide hydrogels. It is found that the particles in the fluid are fractal aggregates composed of smaller particles of radius ca. 5 nm. Read More

We present dynamic light scattering (DLS) measurements of soft polymethyl-methacrylate (PMMA) and polyacrylamide(PA) polymer gels prepared with trapped bodies (latex spheres or maghemite nanoparticles). We show that the anomalous diffusivity of the trapped particles can be analyzed in terms of a fractal Gaussian network gel model for the entire time range probed by DLS technique. This model is a generalization of the Rouse model for linear chains extended for structures with power law network connectivity scaling, which includes both percolating and uniform bulk gel limits. Read More

A light singlino in the NMSSM can reduce considerably the missing transverse energy at the end of sparticle decay cascades; instead, light NMSSM-specific Higgs bosons can be produced. Such scenarios can be consistent with present constraints from the LHC with all sparticle masses below ~1 TeV. We discuss search strategies, which do not rely on missing transverse energy, for such scenarios at the next run of the LHC near 14 TeV. Read More

We address the impact of sterile fermion states on the anomalous magnetic moment of charged leptons, as well as their contribution to neutrinoless double beta decays. We illustrate our results in a minimal, effective extension of the Standard Model by one sterile fermion state, and in a well-motivated framework of neutrino mass generation, embedding the Inverse Seesaw into the Standard Model. The simple "3+1" effective case succeeds in alleviating the tension related to the muon anomalous magnetic moment, albeit only at the 3$\sigma$ level, and for light sterile states (corresponding to a }cosmologically disfavoured regime). Read More

The $f(R)$ gravity theories provide an alternative way to explain the current cosmic acceleration without invoking dark energy matter component. However, the freedom in the choice of the functional forms of $f(R)$ gives rise to the problem of how to constrain and break the degeneracy among these gravity theories on theoretical and/or observational grounds. In this paper to proceed further with the investigation on the potentialities, difficulties and limitations of $f(R)$ gravity, we examine the question as to whether the future dynamics can be used to break the degeneracy between $f(R)$ gravity theories by investigating the future dynamics of spatially homogeneous and isotropic dust flat models in two $f(R)$ gravity theories, namely the well known $f(R) = R + \alpha R^{n}$ gravity and another by A. Read More

We introduce a model of estimation in the presence of strategic, self-interested sensors. We employ a game-theoretic setup to model the interaction between the sensors and the receiver. The cost function of the receiver is equal to the estimation error variance while the cost function of the sensor contains an extra term which is determined by its private information. Read More

We discuss several manifestations of charged lepton flavour violation at high energies. Focusing on a supersymmetric type I seesaw, considering constrained and semi-constrained supersymmetry breaking scenarios, we analyse different observables, both at the LHC and at a future Linear Collider. We further discuss how the synergy between low- and high-energy observables can shed some light on the underlying mechanism of lepton flavour violation. Read More

In this paper we study a random walk in a one-dimensional dynamic random environment consisting of a collection of independent particles performing simple symmetric random walks in a Poisson equilibrium with density $\rho \in (0,\infty)$. At each step the random walk performs a nearest-neighbour jump, moving to the right with probability $p_{\circ}$ when it is on a vacant site and probability $p_{\bullet}$ when it is on an occupied site. Assuming that $p_\circ \in (0,1)$ and $p_\bullet \neq \tfrac12$, we show that the position of the random walk satisfies a strong law of large numbers, a functional central limit theorem and a large deviation bound, provided $\rho$ is large enough. Read More

In this paper we investigate the dynamical behavior of an interface or polymer, in interaction with a distant attractive substrate. The interface is modeled by the graph of a nearest neighbor path with non-negative integer coordinates, and the equilibrium measure associates to each path \eta\ a probability proportional to \lambda^{H(\eta)} where \lambda\ is non-negative and H(\eta) is the number of contacts between \eta\ and the substrate at zero. The dynamics is the natural "spin flip" dynamics associated to this equilibrium measure. Read More

We study the pinning phase transition for discrete surface dynamics in random environments. A renormalization procedure is devised to prove that the interface moves with positive velocity under a finite size condition. This condition is then checked for different examples of microscopic dynamics to illustrate the flexibility of the method. Read More

We address the impact of a modified $W \ell \nu$ coupling on a wide range of observables, such as $\tau$ leptonic and mesonic decays, leptonic decays of pseudoscalar mesons, as well as semileptonic meson decays. In particular, we concentrate on deviations from lepton flavour universality, focusing on the ratios $R_{P} = \Gamma (P \to \ell \nu) / \Gamma (P \to \ell' \nu)$, with $P=K, \pi, D, D_s$, $R(D)={\Gamma (B^+ \to D \tau^+ \nu)}/{\Gamma (B^+ \to D\ell^+ \nu)}$, $R \tau={\Gamma (\tau\to \mu\nu\nu)}/{\Gamma (\tau\to e\nu\nu)}$, $R^{\ell \tau}_P=\Gamma(\tau\to P\nu)/\Gamma(P\to \ell \nu)$, and $\text{BR}(B \to \tau \nu)$. We further consider leptonic gauge boson decays, such as $W\to \ell \nu $ and $Z \to \nu \nu$. Read More

Piggyback Micromegas consists in a novel readout architecture where the anode element is made of a resistive layer on a ceramic substrate. The resistive layer is deposited on the thin ceramic substrate by an industrial process which provides large dynamic range of resistivity (10$^6$ to 10$^{10}$\,M$\Omega$/square). The particularity of this new structure is that the active part is entirely dissociated from the read-out element. Read More

Following recent experimental developments, in this study we re-evaluate if the interplay of high- and low-energy lepton flavour violating observables remains a viable probe to test the high-scale type-I supersymmetric seesaw. Our analysis shows that fully constrained supersymmetric scenarios no longer allow to explore this interplay, since recent LHC data precludes the possibility of having sizeable slepton mass differences for a slepton spectrum sufficiently light to be produced, and in association to BR(mu -> e gamma) within experimental reach. However, relaxing the strict universality of supersymmetric soft-breaking terms, and fully exploring heavy neutrino dynamics, still allows to have slepton mass splittings O(few %), for slepton masses accessible at the LHC, with associated mu -> e gamma rates within future sensitivity. Read More

The alternating direction method of multipliers (ADMM) has emerged as a powerful technique for large-scale structured optimization. Despite many recent results on the convergence properties of ADMM, a quantitative characterization of the impact of the algorithm parameters on the convergence times of the method is still lacking. In this paper we find the optimal algorithm parameters that minimize the convergence factor of the ADMM iterates in the context of l2-regularized minimization and constrained quadratic programming. Read More

We study two dimensional frustrated but non-disordered systems applying a replica approach to a stripe forming model with competing interactions. The phenomenology of the model is representative of several well known systems, like high-Tc superconductors and ultrathin ferromagnetic films, which have been the subject of intense research. We establish the existence of a glass transition to a non-ergodic regime accompanied by an exponential number of long lived metastable states, responsible for slow dynamics and non-equilibrium effects. Read More

Sophistication and logical depth are two measures that express how complicated the structure in a string is. Sophistication is defined as the minimal complexity of a computable function that defines a two-part description for the string that is shortest within some precision; the second can be defined as the minimal computation time of a program that is shortest within some precision. We show that the Busy Beaver function of the sophistication of a string exceeds its logical depth with logarithmically bigger precision, and that logical depth exceeds the Busy Beaver function of sophistication with logarithmically bigger precision. Read More

This paper presents optimal scaling of the alternating directions method of multipliers (ADMM) algorithm for a class of distributed quadratic programming problems. The scaling corresponds to the ADMM step-size and relaxation parameter, as well as the edge-weights of the underlying communication graph. We optimize these parameters to yield the smallest convergence factor of the algorithm. Read More

We address the study of a class of 1D nonlocal conservation laws from a numerical point of view. First, we present an algorithm to numerically integrate them and prove its convergence. Then, we use this algorithm to investigate various analytical properties, obtaining evidence that usual properties of standard conservation laws fail in the nonlocal setting. Read More

We study the potential of an e+- e- Linear Collider for charged lepton flavour violation studies in a supersymmetric framework where neutrino masses and mixings are explained by a type-I seesaw. Focusing on e-mu flavour transitions, we evaluate the background from standard model and supersymmetric charged currents to the e mu + missing E_T signal. We study the energy dependence of both signal and background, and the effect of beam polarisation in increasing the signal over background significance. Read More

Stereoisomers have the same molecular formula and the same atom connectivity and their existence can be related to the presence of different three-dimensional arrangements. Stereoisomerism is of great importance in many different fields since the molecular properties and biological effects of the stereoisomers are often significantly different. Most drugs for example, are often composed of a single stereoisomer of a compound, and while one of them may have therapeutic effects on the body, another may be toxic. Read More

Standard enthalpies of formation are used for assessing the efficiency and safety of chemical processes in the chemical industry. However, the number of compounds for which the enthalpies of formation are available is many orders of magnitude smaller than the number of known compounds. Thermochemical data prediction methods are therefore clearly needed. Read More

Constraints from searches for squarks and gluinos at the LHC at sqrt{s}=8 TeV are applied to the parameter space of the NMSSM with universal squark/slepton and gaugino masses at the GUT scale, but allowing for non-universal soft Higgs mass parameters (the sNMSSM). We confine ourselves to regions of the parameter space compatible with a 125 GeV Higgs boson with diphoton signal rates at least as large as the Standard Model ones, and a dark matter candidate compatible with WMAP and XENON100 constraints. Following the simulation of numerous points in the m_0-M_{1/2} plane, we compare the constraints on the sNMSSM from 3-5 jets + missing E_T channels as well as from multijet + missing E_T channels with the corresponding cMSSM constraints. Read More

**Affiliations:**

^{1}University of Porto,

^{2}Technical University of Lissabon,

^{3}University of Porto,

^{4}CWI and University of Amsterdam

For a finite binary string $x$ its logical depth $d$ for significance $b$ is the shortest running time of a program for $x$ of length $K(x)+b$. There is another definition of logical depth. We give a new proof that the two versions are close. Read More

In this paper we establish a decoupling feature of the random interlacement process I^u in Z^d, at level u, for d \geq 3. Roughly speaking, we show that observations of I^u restricted to two disjoint subsets A_1 and A_2 of Z^d are approximately independent, once we add a sprinkling to the process I^u by slightly increasing the parameter u. Our results differ from previous ones in that we allow the mutual distance between the sets A_1 and A_2 to be much smaller than their diameters. Read More