A. Lung - The Jefferson Lab Fpi Collaboration

A. Lung
Are you A. Lung?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Lung
Affiliation
The Jefferson Lab Fpi Collaboration
Location

Pubs By Year

External Links

Pub Categories

 
Nuclear Experiment (25)
 
High Energy Physics - Phenomenology (2)
 
Nuclear Theory (2)
 
Physics - Instrumentation and Detectors (2)
 
High Energy Physics - Experiment (2)

Publications Authored By A. Lung

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, $Q^2$, and at different four-momentum transfer, t, can be used to probe QCD's transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in $\pi^-$ and $\pi^+$ electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Read More

2014Apr
Affiliations: 1The Jefferson Lab Fpi Collaboration, 2The Jefferson Lab Fpi Collaboration, 3The Jefferson Lab Fpi Collaboration, 4The Jefferson Lab Fpi Collaboration, 5The Jefferson Lab Fpi Collaboration, 6The Jefferson Lab Fpi Collaboration, 7The Jefferson Lab Fpi Collaboration, 8The Jefferson Lab Fpi Collaboration, 9The Jefferson Lab Fpi Collaboration, 10The Jefferson Lab Fpi Collaboration, 11The Jefferson Lab Fpi Collaboration, 12The Jefferson Lab Fpi Collaboration, 13The Jefferson Lab Fpi Collaboration, 14The Jefferson Lab Fpi Collaboration, 15The Jefferson Lab Fpi Collaboration, 16The Jefferson Lab Fpi Collaboration, 17The Jefferson Lab Fpi Collaboration, 18The Jefferson Lab Fpi Collaboration, 19The Jefferson Lab Fpi Collaboration, 20The Jefferson Lab Fpi Collaboration, 21The Jefferson Lab Fpi Collaboration, 22The Jefferson Lab Fpi Collaboration, 23The Jefferson Lab Fpi Collaboration, 24The Jefferson Lab Fpi Collaboration, 25The Jefferson Lab Fpi Collaboration, 26The Jefferson Lab Fpi Collaboration, 27The Jefferson Lab Fpi Collaboration, 28The Jefferson Lab Fpi Collaboration, 29The Jefferson Lab Fpi Collaboration, 30The Jefferson Lab Fpi Collaboration, 31The Jefferson Lab Fpi Collaboration, 32The Jefferson Lab Fpi Collaboration, 33The Jefferson Lab Fpi Collaboration, 34The Jefferson Lab Fpi Collaboration, 35The Jefferson Lab Fpi Collaboration, 36The Jefferson Lab Fpi Collaboration, 37The Jefferson Lab Fpi Collaboration, 38The Jefferson Lab Fpi Collaboration, 39The Jefferson Lab Fpi Collaboration, 40The Jefferson Lab Fpi Collaboration, 41The Jefferson Lab Fpi Collaboration, 42The Jefferson Lab Fpi Collaboration, 43The Jefferson Lab Fpi Collaboration, 44The Jefferson Lab Fpi Collaboration, 45The Jefferson Lab Fpi Collaboration, 46The Jefferson Lab Fpi Collaboration, 47The Jefferson Lab Fpi Collaboration, 48The Jefferson Lab Fpi Collaboration, 49The Jefferson Lab Fpi Collaboration, 50The Jefferson Lab Fpi Collaboration, 51The Jefferson Lab Fpi Collaboration, 52The Jefferson Lab Fpi Collaboration, 53The Jefferson Lab Fpi Collaboration, 54The Jefferson Lab Fpi Collaboration, 55The Jefferson Lab Fpi Collaboration, 56The Jefferson Lab Fpi Collaboration, 57The Jefferson Lab Fpi Collaboration, 58The Jefferson Lab Fpi Collaboration, 59The Jefferson Lab Fpi Collaboration, 60The Jefferson Lab Fpi Collaboration, 61The Jefferson Lab Fpi Collaboration, 62The Jefferson Lab Fpi Collaboration, 63The Jefferson Lab Fpi Collaboration, 64The Jefferson Lab Fpi Collaboration, 65The Jefferson Lab Fpi Collaboration, 66The Jefferson Lab Fpi Collaboration, 67The Jefferson Lab Fpi Collaboration, 68The Jefferson Lab Fpi Collaboration, 69The Jefferson Lab Fpi Collaboration, 70The Jefferson Lab Fpi Collaboration, 71The Jefferson Lab Fpi Collaboration, 72The Jefferson Lab Fpi Collaboration, 73The Jefferson Lab Fpi Collaboration, 74The Jefferson Lab Fpi Collaboration, 75The Jefferson Lab Fpi Collaboration, 76The Jefferson Lab Fpi Collaboration, 77The Jefferson Lab Fpi Collaboration, 78The Jefferson Lab Fpi Collaboration, 79The Jefferson Lab Fpi Collaboration, 80The Jefferson Lab Fpi Collaboration, 81The Jefferson Lab Fpi Collaboration, 82The Jefferson Lab Fpi Collaboration, 83The Jefferson Lab Fpi Collaboration, 84The Jefferson Lab Fpi Collaboration, 85The Jefferson Lab Fpi Collaboration, 86The Jefferson Lab Fpi Collaboration, 87The Jefferson Lab Fpi Collaboration, 88The Jefferson Lab Fpi Collaboration

The study of exclusive $\pi^{\pm}$ electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio $R_L=\sigma_L^{\pi^-}/\sigma_L^{\pi^+}$ is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of $R_T=\sigma_T^{\pi^-}/\sigma_T^{\pi^+}$ from unity at small $-t$, to 1/4 at large $-t$, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Read More

The parity-violating asymmetry arising from inelastic electron-nucleon scattering at backward angle (~95 degrees) near the Delta(1232) resonance has been measured using a hydrogen target. From this asymmetry, we extracted the axial transition form factor G^A_{N\Delta}, a function of the axial Adler form factors C^A_i. Though G^A_{N\Delta} has been previously studied using charged current reactions, this is the first measurement of the weak neutral current excitation of the Delta using a proton target. Read More

We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the first precision measurement of the proton's weak charge, $Q_W =1 - 4\sin^2\theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0. Read More

We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. Read More

2011Mar
Authors: G0 Collaboration, D. Androic, D. S. Armstrong, J. Arvieux, R. Asaturyan, T. D. Averett, S. L. Bailey, G. Batigne, D. H. Beck, E. J. Beise, J. Benesch, F. Benmokhtar, L. Bimbot, J. Birchall, A. Biselli, P. Bosted, H. Breuer, P. Brindza, C. L. Capuano, R. D. Carlini, R. Carr, N. Chant, Y. -C. Chao, R. Clark, A. Coppens, S. D. Covrig, A. Cowley, D. Dale, C. A. Davis, C. Ellis, W. R. Falk, H. Fenker, J. M. Finn, T. Forest, G. Franklin, R. Frascaria, C. Furget, D. Gaskell, M. T. W. Gericke, J. Grames, K. A. Griffioen, K. Grimm, G. Guillard, B. Guillon, H. Guler, K. Gustafsson, L. Hannelius, J. Hansknecht, R. D. Hasty, A. M. Hawthorne Allen, T. Horn, T. M. Ito, K. Johnston, M. Jones, P. Kammel, R. Kazimi, P. M. King, A. Kolarkar, E. Korkmaz, W. Korsch, S. Kox, J. Kuhn, J. Lachniet, R. Laszewski, L. Lee, J. Lenoble, E. Liatard, J. Liu, A. Lung, G. A. MacLachlan, J. Mammei, D. Marchand, J. W. Martin, D. J. Mack, K. W. McFarlane, D. W. McKee, R. D. McKeown, F. Merchez, M. Mihovilovic, A. Micherdzinska, H. Mkrtchyan, B. Moffit, M. Morlet, M. Muether, J. Musson, K. Nakahara, R. Neveling, S. Niccolai, D. Nilsson, S. Ong, S. A. Page, V. Papavassiliou, S. F. Pate, S. K. Phillips, P. Pillot, M. L. Pitt, M. Poelker, T. A. Porcelli, G. Quemener, B. P. Quinn, W. D. Ramsay, A. W. Rauf, J. -S. Real, T. Ries, J. Roche P. Roos, G. A. Rutledge, J. Schaub, J. Secrest, T. Seva, N. Simicevic, G. R. Smith, D. T. Spayde, S. Stepanyan, M. Stutzman, R. Suleiman, V. Tadevosyan, R. Tieulent, J. van de Wiele, W. T. H. van Oers, M. Versteegen, E. Voutier, W. F. Vulcan, S. P. Wells, G. Warren, S. E. Williamson, R. J. Woo, S. A. Wood, C. Yan, J. Yun, V. Zeps

In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. Read More

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. Read More

Cross sections for the reaction ${^1}$H($e,e'\pi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2. Read More

The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Read More

We report on a detailed study of longitudinal strength in the nucleon resonance region, presenting new results from inclusive electron-proton cross sections measured at Jefferson Lab Hall C in the four-momentum transfer range 0.2 < Q^2 < 5.5 GeV^2. Read More

We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory. Read More

Inclusive electron scattering data are presented for ^2H and Fe targets at an incident electron energy of 4.045 GeV for a range of momentum transfers from Q^2 = 1 to 7 (GeV/c)^2. Data were taken at Jefferson Laboratory for low values of energy loss, corresponding to values of Bjorken x greater than or near 1. Read More

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M^Z= 0. Read More

Recently, there has been considerable theoretical interest in determining strange quark contributions to hadronic matrix elements. Such matrix elements can be accessed through the nucleon's neutral weak form factors as determined in parity violating electron scattering. The SAMPLE experiment will measure the strange magnetic form factor $G_M^s$ at low momentum transfer. Read More

The inclusive A(e,e') cross section for $x \simeq 1$ was measured on $^2$H, C, Fe, and Au for momentum transfers $Q^2$ from 1-7 (GeV/c)$^2$. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit $\xi$-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering. Read More