A. Lukhanin - The Jefferson Lab Hall A Collaboration

A. Lukhanin
Are you A. Lukhanin?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Lukhanin
Affiliation
The Jefferson Lab Hall A Collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (7)
 
Nuclear Experiment (5)
 
Nuclear Theory (1)
 
Physics - Instrumentation and Detectors (1)

Publications Authored By A. Lukhanin

We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element $d_2$ of the neutron ($d_{2}^{n}$) was conducted. This quantity represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the spin structure functions $g_1$ and $g_2$ on $^{3}$He after nuclear corrections had been applied to these moments. Read More

We report on the design, construction, commissioning, and performance of a threshold gas \v{C}erenkov counter in an open configuration, which operates in a high luminosity environment and produces a high photo-electron yield. Part of a unique open geometry detector package known as the Big Electron Telescope Array, this \v{C}erenkov counter served to identify scattered electrons and reject produced pions in an inclusive scattering experiment known as the Spin Asymmetries of the Nucleon Experiment E07-003 at the Thomas Jefferson National Accelerator Facility (TJNAF) also known as Jefferson Lab. The experiment consisted of a measurement of double spin asymmetries $A_{\parallel}$ and $A_{\perp}$ of a polarized electron beam impinging on a polarized ammonia target. Read More

2014Jun
Affiliations: 1The Jefferson Lab Hall A Collaboration, 2The Jefferson Lab Hall A Collaboration, 3The Jefferson Lab Hall A Collaboration, 4The Jefferson Lab Hall A Collaboration, 5The Jefferson Lab Hall A Collaboration, 6The Jefferson Lab Hall A Collaboration, 7The Jefferson Lab Hall A Collaboration, 8The Jefferson Lab Hall A Collaboration, 9The Jefferson Lab Hall A Collaboration, 10The Jefferson Lab Hall A Collaboration, 11The Jefferson Lab Hall A Collaboration, 12The Jefferson Lab Hall A Collaboration, 13The Jefferson Lab Hall A Collaboration, 14The Jefferson Lab Hall A Collaboration, 15The Jefferson Lab Hall A Collaboration, 16The Jefferson Lab Hall A Collaboration, 17The Jefferson Lab Hall A Collaboration, 18The Jefferson Lab Hall A Collaboration, 19The Jefferson Lab Hall A Collaboration, 20The Jefferson Lab Hall A Collaboration, 21The Jefferson Lab Hall A Collaboration, 22The Jefferson Lab Hall A Collaboration, 23The Jefferson Lab Hall A Collaboration, 24The Jefferson Lab Hall A Collaboration, 25The Jefferson Lab Hall A Collaboration, 26The Jefferson Lab Hall A Collaboration, 27The Jefferson Lab Hall A Collaboration, 28The Jefferson Lab Hall A Collaboration, 29The Jefferson Lab Hall A Collaboration, 30The Jefferson Lab Hall A Collaboration, 31The Jefferson Lab Hall A Collaboration, 32The Jefferson Lab Hall A Collaboration, 33The Jefferson Lab Hall A Collaboration, 34The Jefferson Lab Hall A Collaboration, 35The Jefferson Lab Hall A Collaboration, 36The Jefferson Lab Hall A Collaboration, 37The Jefferson Lab Hall A Collaboration, 38The Jefferson Lab Hall A Collaboration, 39The Jefferson Lab Hall A Collaboration, 40The Jefferson Lab Hall A Collaboration, 41The Jefferson Lab Hall A Collaboration, 42The Jefferson Lab Hall A Collaboration, 43The Jefferson Lab Hall A Collaboration, 44The Jefferson Lab Hall A Collaboration, 45The Jefferson Lab Hall A Collaboration, 46The Jefferson Lab Hall A Collaboration, 47The Jefferson Lab Hall A Collaboration, 48The Jefferson Lab Hall A Collaboration, 49The Jefferson Lab Hall A Collaboration, 50The Jefferson Lab Hall A Collaboration, 51The Jefferson Lab Hall A Collaboration, 52The Jefferson Lab Hall A Collaboration, 53The Jefferson Lab Hall A Collaboration, 54The Jefferson Lab Hall A Collaboration, 55The Jefferson Lab Hall A Collaboration, 56The Jefferson Lab Hall A Collaboration, 57The Jefferson Lab Hall A Collaboration, 58The Jefferson Lab Hall A Collaboration, 59The Jefferson Lab Hall A Collaboration, 60The Jefferson Lab Hall A Collaboration, 61The Jefferson Lab Hall A Collaboration, 62The Jefferson Lab Hall A Collaboration, 63The Jefferson Lab Hall A Collaboration, 64The Jefferson Lab Hall A Collaboration, 65The Jefferson Lab Hall A Collaboration, 66The Jefferson Lab Hall A Collaboration, 67The Jefferson Lab Hall A Collaboration, 68The Jefferson Lab Hall A Collaboration, 69The Jefferson Lab Hall A Collaboration, 70The Jefferson Lab Hall A Collaboration, 71The Jefferson Lab Hall A Collaboration, 72The Jefferson Lab Hall A Collaboration, 73The Jefferson Lab Hall A Collaboration, 74The Jefferson Lab Hall A Collaboration, 75The Jefferson Lab Hall A Collaboration, 76The Jefferson Lab Hall A Collaboration, 77The Jefferson Lab Hall A Collaboration, 78The Jefferson Lab Hall A Collaboration, 79The Jefferson Lab Hall A Collaboration, 80The Jefferson Lab Hall A Collaboration, 81The Jefferson Lab Hall A Collaboration, 82The Jefferson Lab Hall A Collaboration, 83The Jefferson Lab Hall A Collaboration, 84The Jefferson Lab Hall A Collaboration, 85The Jefferson Lab Hall A Collaboration, 86The Jefferson Lab Hall A Collaboration, 87The Jefferson Lab Hall A Collaboration, 88The Jefferson Lab Hall A Collaboration, 89The Jefferson Lab Hall A Collaboration, 90The Jefferson Lab Hall A Collaboration, 91The Jefferson Lab Hall A Collaboration, 92The Jefferson Lab Hall A Collaboration

We have performed precision measurements of the double-spin virtual-photon asymmetry $A_1$ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer. Our data cover a wide kinematic range $0.277 \leq x \leq 0. Read More

Single spin asymmetry in inclusive $\pi^0$-production was measured in the polarized target fragmentation region using 50 GeV proton beam. The asymmetry is in agreement with asymmetry measurements in the polarized beam fragmentation region carried out at higher energies. The measurement completed 30-years history of polarized measurements at the PROZA setup. Read More

The first stage of the proposed polarization program SPASCHARM includes the measurements of the single-spin asymmetry (SSA) in exclusive and inclusive reactions with production of stable hadrons and the light meson and baryon resonances.In this study we foresee of using the variety of the unpolarized beams (pions, kaons, protons and antiprotons) in the energy range of 30-60 GeV. The polarized proton and deuteron targets will be used for revealing the flavor and isotopic spin dependencies of the polarization phenomena. Read More

The inclusive $\pi^0$ asymmetries were measured in reactions $p+p\uparrow \to \pi^0+X$ and $\pi^-+p\uparrow \to \pi^0+X$ at 70 and 40 GeV/c respectively. The measurements were made at the central region (for the first reaction) and asymmetry is compatible with zero in the entire measured $p_T$ region. For the second reaction the asymmetry is zero for small $x_F$ region ($-0. Read More

Single Spin Asymmetries (SSA) $A_N$ measured in the two reactions at the Protvino 70 GeV accelerator are presented. $A_N$ in the reaction $p+p(pol)->\pi^0+X$ in the central region is close to zero within the error bars. SSA in the reaction $\pi^- +p(pol)->\pi^0+X$ in the polarized target fragmentation region is equal to $(-15 \pm 4)%$ at $|x_F|>0. Read More

1995Jul
Affiliations: 1PRAGUE, 2PRAGUE, 3PRAGUE, 4PRAGUE, 5PRAGUE, 6PRAGUE, 7PRAGUE, 8PRAGUE, 9DUBNA, 10DUBNA, 11DUBNA, 12DUBNA, 13DUBNA, 14DUBNA, 15DUBNA, 16DUBNA, 17PRAGUE, 18PRAGUE

A new measurement of $\Delta\sigma_T$ for polarized neutrons transmitted through a polarized proton target at 16.2 MeV has been made. A polarized neutron beam was obtained from the $^{3}\rm{H}(d,\vec n)^{4}\rm{He}$ reaction; proton polarization over 90\% was achieved in a frozen spin target of 20 cm$^3$ volume. Read More