# A. Kulesza - Hamburg, DESY

## Contact Details

NameA. Kulesza |
||

AffiliationHamburg, DESY |
||

CityHamburg |
||

CountryGermany |
||

## Pubs By Year |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (40) High Energy Physics - Experiment (6) Statistics - Machine Learning (5) Computer Science - Learning (5) Computer Science - Information Retrieval (3) Physics - Physics and Society (3) Computer Science - Artificial Intelligence (2) Statistics - Computation (1) |

## Publications Authored By A. Kulesza

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

Double parton scattering (DPS) is studied at the example of $J/\psi$ pair-production in the LHCb and ATLAS experiments of the Large Hadron Collider (LHC) at centre-of-mass energies of $\sqrt{S}=$ 7, 8, and 13 TeV. We report theoretical predictions delivered to the LHCb and ATLAS collaborations adjusted for the fiducial volumes of the corresponding measurements during Run I and provide new predictions at 13 TeV collision energy. It is shown that DPS can lead to noticeable contributions in the distributions of longitudinal variables of the di-$J/\psi$ system, especially at 13 TeV. Read More

In the following we present our results on resummation of invariant mass threshold corrections for the $2 \to 3$ type hadronic production processes in the Mellin moment space formalism. This method is applied to the associated Higgs boson production process $pp \to t \bar{t} H$ at the LHC. The results for the total cross section, the differential distribution with respect to the invariant mass and their uncertainties are presented. Read More

We present state-of-the art predictions for the production of supersymmetric squarks and gluinos at the Large Hadron Collider (LHC), including soft-gluon resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy, the resummation of Coulomb corrections and the contribution from bound states. The NNLL corrections enhance the cross-section predictions and reduce the scale uncertainty to a level of 5-10%. The NNLL resummed cross-section predictions can be obtained from the computer code NNLL-fast, which also provides the scale uncertainty and the pdf and alpha_s error. Read More

The production of supersymmetric stop-antistop pairs at the Large Hadron Collider (LHC) is studied including corrections from soft-gluon resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy in the Mellin-space approach. Additionally, corrections to the hard-matching coefficient at one-loop and Coulomb contributions at two-loop order are considered. The NNLL corrections enhance the cross section for all stop masses at centre-of-mass energies of 8 and 13 TeV compared to the previously calculated predictions at next-to-leading logarithmic (NLL) accuracy. Read More

We present updated predictions for the cross-sections for pair production of squarks and gluinos at the LHC Run II. First of all, we update the calculations based on NLO+NLL partonic cross-sections by using the NNPDF3.0NLO global analysis. Read More

We perform resummation of soft gluon corrections to the total cross section for the process $pp \to t\bar{t}H$. The resummation is carried out at next-to-leading-logarithmic (NLL) accuracy using the Mellin space technique, extending its application to the class of $2 \to 3$ processes. We present an analytical result for the soft anomalous dimension for a hadronic production of two coloured massive particles in association with a colour singlet. Read More

Social networks often encode community structure using multiple distinct types of links between nodes. In this paper we introduce a novel method to extract information from such multi-layer networks, where each type of link forms its own layer. Using the concept of Pareto optimality, community detection in this multi-layer setting is formulated as a multiple criterion optimization problem. Read More

Social media provides a rich source of networked data. This data is represented by a set of nodes and a set of relations (edges). It is often possible to obtain or infer multiple types of relations from the same set of nodes, such as observed friend connections, inferred links via semantic comparison, or relations based off of geographic proximity. Read More

We propose a novel diverse feature selection method based on determinantal point processes (DPPs). Our model enables one to flexibly define diversity based on the covariance of features (similar to orthogonal matching pursuit) or alternatively based on side information. We introduce our approach in the context of Bayesian sparse regression, employing a DPP as a variational approximation to the true spike and slab posterior distribution. Read More

A determinantal point process (DPP) is a probabilistic model of set diversity compactly parameterized by a positive semi-definite kernel matrix. To fit a DPP to a given task, we would like to learn the entries of its kernel matrix by maximizing the log-likelihood of the available data. However, log-likelihood is non-convex in the entries of the kernel matrix, and this learning problem is conjectured to be NP-hard. Read More

We study the effect of soft gluon emission on the total cross section predictions for the $gg\to HZ$ associated Higgs production process at the LHC. To this end, we perform resummation of threshold corrections at the NLL accuracy in the absolute threshold production limit and in the threshold limit for production of a $ZH$ system with a given invariant mass. Analytical results and numerical predictions for various possible LHC collision energies are presented. Read More

We present state-of-the-art cross section predictions for the production of supersymmetric squarks and gluinos at the upcoming LHC run with a centre-of-mass energy of $\sqrt{s} = 13$ and $14$ TeV, and at potential future $pp$ colliders operating at $\sqrt{s} = 33$ and $100$ TeV. The results are based on calculations which include the resummation of soft-gluon emission at next-to-leading logarithmic accuracy, matched to next-to-leading order supersymmetric QCD corrections. Furthermore, we provide an estimate of the theoretical uncertainty due to the variation of the renormalisation and factorisation scales and the parton distribution functions. Read More

We perform the resummation of soft-gluon emissions for squark and gluino production at next- to-next-to-leading-logarithmic (NNLL) accuracy. We include also the one-loop hard matching coefficients as well as Coulomb corrections to second order, using Mellin-moment methods. We study the characteristics of this resummation in detail for a centre-of-mass (CM) energy of 8 TeV at the LHC, and for squark and gluino masses up to 2. Read More

Socially-based recommendation systems have recently attracted significant interest, and a number of studies have shown that social information can dramatically improve a system's predictions of user interests. Meanwhile, there are now many potential applications that involve aspects of both recommendation and information retrieval, and the task of collaborative retrieval---a combination of these two traditional problems---has recently been introduced. Successful collaborative retrieval requires overcoming severe data sparsity, making additional sources of information, such as social graphs, particularly valuable. Read More

Modern social networks frequently encompass multiple distinct types of connectivity information; for instance, explicitly acknowledged friend relationships might complement behavioral measures that link users according to their actions or interests. One way to represent these networks is as multi-layer graphs, where each layer contains a unique set of edges over the same underlying vertices (users). Edges in different layers typically have related but distinct semantics; depending on the application multiple layers might be used to reduce noise through averaging, to perform multifaceted analyses, or a combination of the two. Read More

We present the hard matching coefficients for squark and gluino hadroproduction. The hard matching coefficients follow from the next-to-leading order cross section near threshold and are an important ingredient for performing threshold resummation at next-to-next-to-leading logarithmic accuracy. We discuss the calculation, list the analytical results and study the numerical impact of these corrections. Read More

A determinantal point process (DPP) is a random process useful for modeling the combinatorial problem of subset selection. In particular, DPPs encourage a random subset Y to contain a diverse set of items selected from a base set Y. For example, we might use a DPP to display a set of news headlines that are relevant to a user's interests while covering a variety of topics. Read More

Determinantal point processes (DPPs) are elegant probabilistic models of repulsion that arise in quantum physics and random matrix theory. In contrast to traditional structured models like Markov random fields, which become intractable and hard to approximate in the presence of negative correlations, DPPs offer efficient and exact algorithms for sampling, marginalization, conditioning, and other inference tasks. We provide a gentle introduction to DPPs, focusing on the intuitions, algorithms, and extensions that are most relevant to the machine learning community, and show how DPPs can be applied to real-world applications like finding diverse sets of high-quality search results, building informative summaries by selecting diverse sentences from documents, modeling non-overlapping human poses in images or video, and automatically building timelines of important news stories. Read More

This document emerged from work that started in January 2012 as a joint effort by the ATLAS, CMS and LPCC supersymmetry (SUSY) working groups to compile state-of-the-art cross section predictions for SUSY particle production at the LHC. We present cross sections for various SUSY processes in pp collisions at $\sqrt{s} =7$ TeV, including an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. Further results for higher LHC centre-of-mass energies will be collected at https://twiki. Read More

Determinantal point processes (DPPs), which arise in random matrix theory and quantum physics, are natural models for subset selection problems where diversity is preferred. Among many remarkable properties, DPPs offer tractable algorithms for exact inference, including computing marginal probabilities and sampling; however, an important open question has been how to learn a DPP from labeled training data. In this paper we propose a natural feature-based parameterization of conditional DPPs, and show how it leads to a convex and efficient learning formulation. Read More

We report on the resummation of soft-gluon emissions for squark-antisquark production at next-to-next-to-leading-logarithmic (NNLL) accuracy. We will put particular emphasis on the one loop hard matching coefficients required to perform the resummation. Furthermore we will discuss the numerical effect of the different ingredients in the corrections. Read More

**Authors:**P. Bartalini, E. L. Berger, B. Blok, G. Calucci, R. Corke, M. Diehl, Yu. Dokshitzer, L. Fano, L. Frankfurt, J. R. Gaunt, S. Gieseke, G. Gustafson, D. Kar, C. -H. Kom, A. Kulesza, E. Maina, Z. Nagy, Ch. Roehr, A. Siodmok, M. Schmelling, W. J. Stirling, M. Strikman, D. Treleani

**Category:**High Energy Physics - Phenomenology

We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on "Multi-Parton Interactions at the LHC", DESY Hamburg, 13-15 September 2010. Read More

We consider the resummation of soft gluon emission for squark-antisquark pair-production at the LHC at next-to-next-to-leading-logarithmic (NNLL) accuracy in the framework of the minimal supersymmetric standard model. We present the analytical ingredients needed for the calculation and provide numerical predictions for the LHC at centre-of-mass energies of 7 and 14 TeV. We find a significant reduction in the scale uncertainty and a considerable increase in the prediction of the total cross section. Read More

We discuss the prospects of observing double parton scattering (DPS) processes with purely leptonic final states at the LHC. We first study same-sign W pair production, which is particularly suited for studying momentum and valence number conservation effects, followed by discussions on double Drell-Yan and production of J/psi pairs. The effects of initial state and intrinsic transverse momentum smearing on pair-wise transverse momentum balance characteristic to DPS are studied quantitatively. Read More

We study the prospects for observing double parton scattering through four-muon final states, forming two opposite-sign muon pairs, in the LHCb experiment in pp collisions at 14 TeV centre of mass energy. We consider two special cases, namely double Drell-Yan and J/psi-pair production. The kinematic properties and prospects for observing these processes are discussed. Read More

Squarks and gluinos have been searched for at hadron colliders in events with multiple jets and missing transverse energy. No excess has been observed to date, and from a comparison of experimental cross section limits and theoretical cross section predictions one can deduce lower bounds on the squark and gluino masses. We present an improved analysis of squark and gluino mass bounds which is based on state-of-the-art cross section calculations including the summation of large threshold corrections. Read More

We argue that the recent LHCb observation of J/psi-pair production indicates a significant contribution from double parton scattering, in addition to the standard single parton scattering component. We propose a method to measure the double parton scattering at LHCb using leptonic final states from the decay of two prompt J/psi mesons. Read More

We review the theoretical status of squark and gluino hadroproduction and provide numerical predictions for all squark and gluino pair-production processes at the Tevatron and at the LHC, with a particular emphasis on proton-proton collisions at 7 TeV. Our predictions include next-to-leading order supersymmetric QCD corrections and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order corrections on total cross sections, and provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. Read More

Addressing the ongoing examination of high-frequency trading practices in financial markets, we report the results of an extensive empirical study estimating the maximum possible profitability of the most aggressive such practices, and arrive at figures that are surprisingly modest. By "aggressive" we mean any trading strategy exclusively employing market orders and relatively short holding periods. Our findings highlight the tension between execution costs and trading horizon confronted by high-frequency traders, and provide a controlled and large-scale empirical perspective on the high-frequency debate that has heretofore been absent. Read More

The scalar partners of top and bottom quarks are expected to be the lightest squarks in supersymmetric theories, with potentially large cross sections at hadron colliders. We present predictions for the production of top and bottom squarks at the Tevatron and the LHC, including next-to-leading order corrections in supersymmetric QCD and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy. We discuss the impact of the higher-order corrections on total cross sections and transverse-momentum distributions, and provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. Read More

We study the production of same-sign W boson pairs at the LHC in double parton interactions. Compared with simple factorised double parton distributions (dPDFs), we show that the recently developed dPDFs, GS09, lead to non-trivial kinematic correlations between the W bosons. A numerical study of the prospects for observing this process using same-sign dilepton signatures, including same-sign WWjj, di-boson and heavy flavour backgrounds, at 14 TeV centre-of-mass energy is then performed. Read More

We report on the study of soft gluon effects in the production of squarks and gluinos at hadron colliders. Close to production threshold, the emission of soft gluon results in the appearence of large logarithmic corrections in the theoretical expressions. In order to resum these corrections at next-to-leading-logarithmic accuracy appropriate one-loop anomalous dimensions have to be calculated. Read More

We consider the resummation of soft gluon emission for squark and gluino hadroproduction at next-to-leading-logarithmic (NLL) accuracy in the framework of the minimal supersymmetric standard model. We present analytical results for squark-squark and squark-gluino production and provide numerical predictions for all squark and gluino pair-production processes at the Tevatron and at the LHC. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. Read More

We study the effect of soft gluon emission in the hadroproduction of gluino-gluino and squark-antisquark pairs at the next-to-leading logarithmic (NLL) accuracy within the framework of the minimal supersymmetric model. We present the calculation of the one-loop soft anomalous dimension matrices controlling the colour evolution of the underlying hard-scattering processes. The numerical results for resummed cross sections for proton-proton collisions at the Large Hadron Collider are discussed in detail. Read More

We study the effect of soft gluon emission in the hadroproduction of squark-antisquark and gluino-gluino pairs at the next-to-leading logarithmic (NLL) accuracy within the framework of the minimal supersymmetric model. The one-loop soft anomalous dimension matrices controlling the colour evolution of the underlying hard-scattering processes are calculated. We present the resummed total cross sections and show numerical results for proton-proton collisions at 14 TeV. Read More

**Authors:**C. Buttar

^{1}, J. D'Hondt

^{2}, M. Kramer

^{3}, G. Salam

^{4}, M. Wobisch

^{5}, N. E. Adam

^{6}, V. Adler

^{7}, A. Arbuzov

^{8}, D. Bardin

^{9}, U. Baur

^{10}, A. A. Bhatti

^{11}, S. Bondarenko

^{12}, V. Buge

^{13}, J. M. Butterworth

^{14}, M. Cacciari

^{15}, M. Campanelli

^{16}, Q. -H. Cao

^{17}, C. M. Carloni Calame

^{18}, P. Christova

^{19}, D. D'Enterria

^{20}, J. D'Hondt

^{21}, S. Ferrag, K. Geerlings, V. Halyo, M. Heinrich, J. Huston, J. Jackson, B. Jantzen, L. Kalinovskaya, D. Kcira, B. Klein, A. Kulesza, P. Loch, G. Montagna, S. Moretti, D. Newbold, O. Nicrosini, H. Nilsen, A. A. Penin, F. Piccinini, S. Pozzorini, K. Rabbertz, J. Rojo Chacon, R. Sadykov, M. Schulze, C. Shepherd-Themistocleous, A. Sherstnev, P. Z. Skands, L. Sonnenschein, G. Soyez, R. S. Thorne, M. Tytgat, P. Van Mulders, M. Vazquez Acosta, A. Vicini, I. Villella, D. Wackeroth, C. -P. Yuan

**Affiliations:**

^{1}ed.,

^{2}ed.,

^{3}ed.,

^{4}ed.,

^{5}ed.,

^{6}ed.,

^{7}ed.,

^{8}ed.,

^{9}ed.,

^{10}ed.,

^{11}ed.,

^{12}ed.,

^{13}ed.,

^{14}ed.,

^{15}ed.,

^{16}ed.,

^{17}ed.,

^{18}ed.,

^{19}ed.,

^{20}ed.,

^{21}ed.

**Category:**High Energy Physics - Phenomenology

This report summarizes the activity on comparisons of existings tools for the standard model and on issues in jet physics by the SMHC working group during and subsequent to the Workshop "Physics at TeV Colliders", Les Houches, France, 11-29 June, 2007. Read More

**Affiliations:**

^{1}Karlsruhe U., TTP,

^{2}Hamburg, DESY,

^{3}Munich, Max Planck Inst.,

^{4}Karlsruhe U., TTP

**Category:**High Energy Physics - Phenomenology

To match the precision of present and future measurements of W-boson production at hadron colliders electroweak radiative corrections must be included in the theory predictions. In this paper we consider their effect on the transverse momentum (p_T) distribution of W bosons, with emphasis on large p_T. We evaluate the full electroweak O(alpha) corrections to the processes pp -> W+jet and p\bar p -> W+jet including virtual and real photonic contributions. Read More

To match the precision of present and future measurements of W-boson production at hadron colliders, electroweak radiative corrections must be included in the theory predictions. In this paper we consider their effect on the transverse momentum (p_T) distribution of W bosons, with emphasis on large p_T. We evaluate the full electroweak O(\alpha) corrections to the process pp -> Wj including virtual and real photonic contributions. Read More

**Authors:**C. Buttar, S. Dittmaier, V. Drollinger, S. Frixione, A. Nikitenko, S. Willenbrock S. Abdullin, E. Accomando, D. Acosta, A. Arbuzov, R. D. Ball, A. Ballestrero, P. Bartalini, U. Baur, A. Belhouari, S. Belov, A. Belyaev, D. Benedetti, T. Binoth, S. Bolognesi, S. Bondarenko, E. E. Boos, F. Boudjema, A. Bredenstein, V. E. Bunichev, C. Buttar, J. M. Campbell, C. Carloni Calame, S. Catani, R. Cavanaugh, M. Ciccolini, J. Collins, A. M. Cooper-Sarkar, G. Corcella, S. Cucciarelli, G. Davatz, V. DelDuca, A. Denner, J. D'Hondt, S. Dittmaier, V. Drollinger, A. Drozdetskiy, L. V. Dudko, M. Duehrssen, R. Frazier, S. Frixione, J. Fujimoto, S. Gascon-Shotkin, T. Gehrmann, A. Gehrmann-De Ridder, A. Giammanco, A. -S. Giolo-Nicollerat, E. W. N. Glover, R. M. Godbole, A. Grau, M. Grazzini, J. -Ph. Guillet, A. Gusev, R. Harlander, R. Hegde, G. Heinrich, J. Heyninck, J. Huston, T. Ishikawa, A. Kalinowski, T. Kaneko, K. Kato, N. Kauer, W. Kilgore, M. Kirsanov, A. Korytov, M. Kraemer, A. Kulesza, Y. Kurihara, S. Lehti, L. Magnea, F. Mahmoudi, E. Maina, F. Maltoni, C. Mariotti, B. Mellado, D. Mercier, G. Mitselmakher, G. Montagna, A. Moraes, M. Moretti, S. Moretti, I. Nakano, P. Nason, O. Nicrosini, A. Nikitenko, M. R. Nolten, F. Olness, Yu. Pakhotin, G. Pancheri, F. Piccinini, E. Pilon, R. Pittau, S. Pozzorini, J. Pumplin, W. Quayle, D. A. Ross, R. Sadykov, M. Sandhoff, V. I. Savrin, A. Schmidt, M. Schulze, S. Schumann, B. Scurlock, A. Sherstnev, P. Skands, G. Somogyi, J. Smith, M. Spira, Y. Srivastava, H. Stenzel, Y. Sumino, R. Tanaka, Z. Trocsanyi, S. Tsuno, A. Vicini, D. Wackeroth, M. M. Weber, C. Weiser, S. Willenbrock, S. L. Wu, M. Zanetti

**Category:**High Energy Physics - Phenomenology

This Report summarises the activities of the "SM and Higgs" working group for the Workshop "Physics at TeV Colliders", Les Houches, France, 2-20 May, 2005. On the one hand, we performed a variety of experimental and theoretical studies on standard candles (such as W, Z, and ttbar production), treating them either as proper signals of known physics, or as backgrounds to unknown physics; we also addressed issues relevant to those non-perturbative or semi-perturbative ingredients, such as Parton Density Functions and Underlying Events, whose understanding will be crucial for a proper simulation of the actual events taking place in the detectors. On the other hand, several channels for the production of the Higgs, or involving the Higgs, have been considered in some detail. Read More

We study the resummation of large logarithmic QCD corrections for the process pp ->H+ X when the Higgs boson H is produced at high transverse momentum. The corrections arise near the threshold for partonic reaction and originate from soft gluon emission. We perform the all-order resummation at next-to-leading logarithmic accuracy and match the resummed result with the next-to-leading order perturbative predictions. Read More

We study the impact of electroweak radiative corrections on direct production of photons with high transverse momenta at hadron colliders. Analytic results for the weak one-loop corrections to the parton scattering reaction $\bar q q \to \gamma g$ and its crossed variants are presented. For the high-energy region, where the corrections are strongly enhanced by logarithms of $\hat s/M_W^2$, we derive simple asymptotic expressions which approximate the exact one-loop results with high precision. Read More

To match the precision of present and future measurements of Z-boson production at hadron colliders, electroweak radiative corrections must be included in the theory predictions. In this paper we consider their effect on the transverse momentum ($p_T$) distribution of Z bosons, with emphasis on large $p_T$. We evaluate, analytically and numerically, the full one-loop corrections for the parton scattering reaction $q\bar q \to Z g$ and its crossed variants. Read More

We consider hadronic production of a Z boson in association with a jet and study one- and two-loop electroweak logarithmic corrections in the region of high Z-boson transverse momentum, p_T >> M_Z, including leading and next-to-leading logarithms. Numerical results for the LHC and Tevatron colliders are presented. At the LHC these corrections amount to tens of per cent and will be important for interpretation of the measurements. Read More

**Authors:**M. Dobbs, S. Frixione, E. Laenen, A. De Roeck, K. Tollefson, J. Andersen, C. Balazs, A. Banfi, S. Berge, W. Bernreuther, T. Binoth, A. Brandenburg, C. Buttar, Q-H. Cao, G. Corcella, A. Cruz, I. Dawson, V. Del Duca, V. Drollinger, L. Dudko, T. Eynck, R. Field, M. Grazzini, J. P. Guillet, G. Heinrich, J. Huston, N. Kauer, N. Kidonakis, A. Kulesza, K. Lassila-Perini, L. Magnea, F. Mahmoudi, E. Maina, F. Maltoni, M. Nolten, A. Moraes, S. Moretti, S. Mrenna, P. Nadolsky, Z. Nagy, F. Olness, I. Puljak, D. A. Ross, A. Sabio-Vera, G. P. Salam, A. Sherstnev, Z. G. Si, T. Sjostrand, P. Skands, E. Thome, Z. Trocsanyi, P. Uwer, S. Weinzierl, C. P. Yuan, G. Zanderighi

**Category:**High Energy Physics - Phenomenology

This report documents the results obtained by the Working Group on Quantum Chromodynamics and the Standard Model for the Workshop `Physics at TeV Colliders'', Les Houches, France, 26 May - 6 June 2003. After a Monte Guide description, the first contributions report on progress in describing multiple interactions, important for the LHC, and underlying events. An announcement of a Monte Carlo database, under construction, is then followed by a number of contributions improving parton shower descriptions. Read More

This paper describes a comparison of most of the available predictions for the cross section and transverse momentum distribution for a 125 GeV mass Higgs at the LHC, including those from the PYTHIA and HERWIG parton shower Monte Carlos and from four resummation calculations. Read More

We apply QCD resummation techniques to study the transverse momentum distribution of Higgs bosons produced via gluon-gluon fusion at the LHC. In particular we focus on the joint resummation formalism which resums both threshold and transverse momentum corrections simultaneously. A comparison of results obtained in the joint and the standard recoil resummation frameworks is presented. Read More

We study the application of the joint resummation formalism to Higgs production via gluon-gluon fusion at the LHC, defining inverse transforms by analytic continuation. We work at next-to-leading logarithmic accuracy. We find that at low Q_T the resummed Higgs Q_T distributions are comparable in the joint and pure-Q_T formalisms, with relatively small influence from threshold enhancement in this range. Read More

We investigate the form of the non-perturbative parameterization in both the impact parameter (b) space and transverse momentum (p_T) space resummation formalisms for the transverse momentum distribution of single massive bosons produced at hadron colliders. We propose to analyse data on Upsilon hadroproduction as a means of studying the non-perturbative contribution in processes with two gluons in the initial state. We also discuss the theoretical errors on the resummed Higgs transverse momentum distribution at the LHC arising from the non-perturbative contribution. Read More

We study applications of QCD soft-gluon resummations to electroweak annihilation cross sections. We focus on a formalism that allows to resum logarithmic corrections arising near partonic threshold and at small transverse momentum simultaneously. Read More