A. Konovalov - National Nuclear Research University, MEPhI, Russia

A. Konovalov
Are you A. Konovalov?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Konovalov
Affiliation
National Nuclear Research University, MEPhI, Russia
City
Moskva
Country
Russia

Pubs By Year

Pub Categories

 
Mathematics - Rings and Algebras (20)
 
Mathematics - Group Theory (19)
 
Physics - Instrumentation and Detectors (6)
 
High Energy Physics - Experiment (6)
 
Mathematics - Representation Theory (4)
 
Instrumentation and Methods for Astrophysics (2)
 
Nuclear Experiment (2)
 
Mathematics - Combinatorics (1)
 
Computer Science - Digital Libraries (1)
 
Computer Science - Computational Engineering; Finance; and Science (1)
 
Computer Science - Mathematical Software (1)

Publications Authored By A. Konovalov

2017Mar
Authors: B. J. Mount, S. Hans, R. Rosero, M. Yeh, C. Chan, R. J. Gaitskell, D. Q. Huang, J. Makkinje, D. C. Malling, M. Pangilinan, C. A. Rhyne, W. C. Taylor, J. R. Verbus, Y. D. Kim, H. S. Lee, J. Lee, D. S. Leonard, J. Li, J. Belle, A. Cottle, W. H. Lippincott, D. J. Markley, T. J. Martin, M. Sarychev, T. E. Tope, M. Utes, R. Wang, I. Young, H. M. Araújo, A. J. Bailey, D. Bauer, D. Colling, A. Currie, S. Fayer, F. Froborg, S. Greenwood, W. G. Jones, V. Kasey, M. Khaleeq, I. Olcina, B. López Paredes, A. Richards, T. J. Sumner, A. Tomás, A. Vacheret, P. Brás, A. Lindote, M. I. Lopes, F. Neves, J. P. Rodrigues, C. Silva, V. N. Solovov, M. J. Barry, A. Cole, A. Dobi, W. R. Edwards, C. H. Faham, S. Fiorucci, N. J. Gantos, V. M. Gehman, M. G. D. Gilchriese, K. Hanzel, M. D. Hoff, K. Kamdin, K. T. Lesko, C. T. McConnell, K. O'Sullivan, K. C. Oliver-Mallory, S. J. Patton, J. S. Saba, P. Sorensen, K. J. Thomas, C. E. Tull, W. L. Waldron, M. S. Witherell, A. Bernstein, K. Kazkaz, J. Xu, D. Yu. Akimov, A. I. Bolozdynya, A. V. Khromov, A. M. Konovalov, A. V. Kumpan, V. V. Sosnovtsev, C. E. Dahl, D. Temples, M. C. Carmona-Benitez, L. de Viveiros, D. S. Akerib, H. Auyeung, T. P. Biesiadzinski, M. Breidenbach, R. Bramante, R. Conley, W. W. Craddock, A. Fan, A. Hau, C. M. Ignarra, W. Ji, H. J. Krebs, R. Linehan, C. Lee, S. Luitz, E. Mizrachi, M. E. Monzani, F. G. O'Neill, S. Pierson, M. Racine, B. N. Ratcliff, G. W. Shutt, T. A. Shutt, K. Skarpaas, K. Stifter, W. H. To, J. Va'vra, T. J. Whitis, W. J. Wisniewski, X. Bai, R. Bunker, R. Coughlen, C. Hjemfelt, R. Leonard, E. H. Miller, E. Morrison, J. Reichenbacher, R. W. Schnee, M. R. Stark, K. Sundarnath, D. R. Tiedt, M. Timalsina, P. Bauer, B. Carlson, M. Horn, M. Johnson, J. Keefner, C. Maupin, D. J. Taylor, S. Balashov, P. Ford, V. Francis, E. Holtom, A. Khazov, A. Kaboth, P. Majewski, J. A. Nikkel, J. O'Dell, R. M. Preece, M. G. D. van der Grinten, S. D. Worm, R. L. Mannino, T. M. Stiegler, P. A. Terman, R. C. Webb, C. Levy, J. Mock, M. Szydagis, J. K. Busenitz, M. Elnimr, J. Y-K. Hor, Y. Meng, A. Piepke, I. Stancu, L. Kreczko, B. Krikler, B. Penning, E. P. Bernard, R. G. Jacobsen, D. N. McKinsey, R. Watson, J. E. Cutter, S. El-Jurf, R. M. Gerhard, D. Hemer, S. Hillbrand, B. Holbrook, B. G. Lenardo, A. G. Manalaysay, J. A. Morad, S. Stephenson, J. A. Thomson, M. Tripathi, S. Uvarov, S. J. Haselschwardt, S. Kyre, C. Nehrkorn, H. N. Nelson, M. Solmaz, D. T. White, M. Cascella, J. E. Y. Dobson, C. Ghag, X. Liu, L. Manenti, L. Reichhart, S. Shaw, U. Utku, P. Beltrame, T. J. R. Davison, M. F. Marzioni, A. St. J. Murphy, A. Nilima, B. Boxer, S. Burdin, A. Greenall, S. Powell, H. J. Rose, P. Sutcliffe, J. Balajthy, T. K. Edberg, C. R. Hall, J. S. Silk, S. Hertel, C. W. Akerlof, M. Arthurs, W. Lorenzon, K. Pushkin, M. Schubnell, K. E. Boast, C. Carels, T. Fruth, H. Kraus, F. -T. Liao, J. Lin, P. R. Scovell, E. Druszkiewicz, D. Khaitan, M. Koyuncu, W. Skulski, F. L. H. Wolfs, J. Yin, E. V. Korolkova, V. A. Kudryavtsev, P. Rossiter, D. Woodward, A. A. Chiller, C. Chiller, D. -M. Mei, L. Wang, W. -Z. Wei, M. While, C. Zhang, S. K. Alsum, T. Benson, D. L. Carlsmith, J. J. Cherwinka, S. Dasu, G. Gregerson, B. Gomber, A. Pagac, K. J. Palladino, C. O. Vuosalo, Q. Xiao, J. H. Buckley, V. V. Bugaev, M. A. Olevitch, E. M. Boulton, W. T. Emmet, T. W. Hurteau, N. A. Larsen, E. K. Pease, B. P. Tennyson, L. Tvrznikova

In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters. Read More

2017Feb
Authors: D. S. Akerib, C. W. Akerlof, D. Yu. Akimov, S. K. Alsum, H. M. Araújo, I. J. Arnquist, M. Arthurs, X. Bai, A. J. Bailey, J. Balajthy, S. Balashov, M. J. Barry, J. Belle, P. Beltrame, T. Benson, E. P. Bernard, A. Bernstein, T. P. Biesiadzinski, K. E. Boast, A. Bolozdynya, B. Boxer, R. Bramante, P. Brás, J. H. Buckley, V. V. Bugaev, R. Bunker, S. Burdin, J. K. Busenitz, C. Carels, D. L. Carlsmith, B. Carlson, M. C. Carmona-Benitez, C. Chan, J. J. Cherwinka, A. A. Chiller, C. Chiller, A. Cottle, R. Coughlen, W. W. Craddock, A. Currie, C. E. Dahl, T. J. R. Davison, A. Dobi, J. E. Y. Dobson, E. Druszkiewicz, T. K. Edberg, W. R. Edwards, W. T. Emmet, C. H. Faham, S. Fiorucci, T. Fruth, R. J. Gaitskell, N. J. Gantos, V. M. Gehman, R. M. Gerhard, C. Ghag, M. G. D. Gilchriese, B. Gomber, C. R. Hall, S. Hans, K. Hanzel, S. J. Haselschwardt, S. A. Hertel, S. Hillbrand, C. Hjemfelt, M. D. Hoff, B. Holbrook, E. Holtom, E. W. Hoppe, J. Y-K. Hor, M. Horn, D. Q. Huang, T. W. Hurteau, C. M. Ignarra, R. G. Jacobsen, W. Ji, A. Kaboth, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, A. V. Khromov, A. M. Konovalov, E. V. Korolkova, M. Koyuncu, H. Kraus, H. J. Krebs, V. A. Kudryavtsev, A. V. Kumpan, S. Kyre, C. Lee, H. S. Lee, J. Lee, D. S. Leonard, R. Leonard, K. T. Lesko, C. Levy, F. -T. Liao, J. Lin, A. Lindote, R. E. Linehan, W. H. Lippincott, X. Liu, M. I. Lopes, B. Lopez Paredes, W. Lorenzon, S. Luitz, P. Majewski, A. Manalaysay, L. Manenti, R. L. Mannino, D. J. Markley, T. J. Martin, M. F. Marzioni, C. T. McConnell, D. N. McKinsey, D. -M. Mei, Y. Meng, E. H. Miller, E. Mizrachi, J. Mock, M. E. Monzani, J. A. Morad, B. J. Mount, A. St. J. Murphy, C. Nehrkorn, H. N. Nelson, F. Neves, J. A. Nikkel, J. O'Dell, K. O'Sullivan, I. Olcina, M. A. Olevitch, K. C. Oliver-Mallory, K. J. Palladino, E. K. Pease, A. Piepke, S. Powell, R. M. Preece, K. Pushkin, B. N. Ratcliff, J. Reichenbacher, L. Reichhart, C. A. Rhyne, A. Richards, J. P. Rodrigues, H. J. Rose, R. Rosero, P. Rossiter, J. S. Saba, M. Sarychev, R. W. Schnee, M. Schubnell, P. R. Scovell, S. Shaw, T. A. Shutt, C. Silva, K. Skarpaas, W. Skulski, M. Solmaz, V. N. Solovov, P. Sorensen, V. V. Sosnovtsev, I. Stancu, M. R. Stark, S. Stephenson, T. M. Stiegler, K. Stifter, T. J. Sumner, M. Szydagis, D. J. Taylor, W. C. Taylor, D. Temples, P. A. Terman, K. J. Thomas, J. A. Thomson, D. R. Tiedt, M. Timalsina, W. H. To, A. Tomás, T. E. Tope, M. Tripathi, L. Tvrznikova, J. Va'vra, A. Vacheret, M. G. D. van der Grinten, J. R. Verbus, C. O. Vuosalo, W. L. Waldron, R. Wang, R. Watson, R. C. Webb, W. -Z. Wei, M. While, D. T. White, T. J. Whitis, W. J. Wisniewski, M. S. Witherell, F. L. H. Wolfs, D. Woodward, S. Worm, J. Xu, M. Yeh, J. Yin, C. Zhang

The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. Read More

The prime graph question asks whether the Gruenberg-Kegel graph of an integral group ring $\mathbb Z G$ , i.e. the prime graph of the normalised unit group of $\mathbb Z G$ coincides with that one of the group $G$. Read More

A conjecture of Roseberger asserts that every generalised triangle group either is virtually soluble or contains a non-abelian free subgroup. Modulo two exceptional cases, we verify this conjecture for generalised triangle groups of type (2,3,2) which do not admit essential representations onto the cyclic group of order 6. Read More

We identify all small groups of order up to 288 in the GAP Library for which the Zassenhaus conjecture on rational conjugacy of units of finite order in the integral group ring cannot be established by an existing method. The groups must first survive all theoretical sieves and all known restrictions on partial augmentations (the HeLP$^+$ method). Then two new computational methods for verifying the Zassenhaus conjecture are applied to the unresolved cases, which we call the quotient method and the partially central unit construction method. Read More

OpenDreamKit --- "Open Digital Research Environment Toolkit for the Advancement of Mathematics" --- is an H2020 EU Research Infrastructure project that aims at supporting, over the period 2015--2019, the ecosystem of open-source mathematical software systems. From that, OpenDreamKit will deliver a flexible toolkit enabling research groups to set up Virtual Research Environments, customised to meet the varied needs of research projects in pure mathematics and applications. An important step in the OpenDreamKit endeavor is to foster the interoperability between a variety of systems, ranging from computer algebra systems over mathematical databases to front-ends. Read More

The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. Read More

2015Sep
Authors: The LZ Collaboration, D. S. Akerib, C. W. Akerlof, D. Yu. Akimov, S. K. Alsum, H. M. Araújo, X. Bai, A. J. Bailey, J. Balajthy, S. Balashov, M. J. Barry, P. Bauer, P. Beltrame, E. P. Bernard, A. Bernstein, T. P. Biesiadzinski, K. E. Boast, A. I. Bolozdynya, E. M. Boulton, R. Bramante, J. H. Buckley, V. V. Bugaev, R. Bunker, S. Burdin, J. K. Busenitz, C. Carels, D. L. Carlsmith, B. Carlson, M. C. Carmona-Benitez, M. Cascella, C. Chan, J. J. Cherwinka, A. A. Chiller, C. Chiller, W. W. Craddock, A. Currie, J. E. Cutter, J. P. da Cunha, C. E. Dahl, S. Dasu, T. J. R. Davison, L. de Viveiros, A. Dobi, J. E. Y. Dobson, E. Druszkiewicz, T. K. Edberg, B. N. Edwards, W. R. Edwards, M. M. Elnimr, W. T. Emmet, C. H. Faham, S. Fiorucci, P. Ford, V. B. Francis, C. Fu, R. J. Gaitskell, N. J. Gantos, V. M. Gehman, R. M. Gerhard, C. Ghag, M. G. D. Gilchriese, B. Gomber, C. R. Hall, A. Harris, S. J. Haselschwardt, S. A. Hertel, M. D. Hoff, B. Holbrook, E. Holtom, D. Q. Huang, T. W. Hurteau, C. M. Ignarra, R. G. Jacobsen, W. Ji, X. Ji, M. Johnson, Y. Ju, K. Kamdin, K. Kazkaz, D. Khaitan, A. Khazov, A. V. Khromov, A. M. Konovalov, E. V. Korolkova, H. Kraus, H. J. Krebs, V. A. Kudryavtsev, A. V. Kumpan, S. Kyre, N. A. Larsen, C. Lee, B. G. Lenardo, K. T. Lesko, F. -T. Liao, J. Lin, A. Lindote, W. H. Lippincott, J. Liu, X. Liu, M. I. Lopes, W. Lorenzon, S. Luitz, P. Majewski, D. C. Malling, A. G. Manalaysay, L. Manenti, R. L. Mannino, D. J. Markley, T. J. Martin, M. F. Marzioni, D. N. McKinsey, D. -M. Mei, Y. Meng, E. H. Miller, J. Mock, M. E. Monzani, J. A. Morad, A. St. J. Murphy, H. N. Nelson, F. Neves, J. A. Nikkel, F. G. O'Neill, J. O'Dell, K. O'Sullivan, M. A. Olevitch, K. C. Oliver-Mallory, K. J. Palladino, M. Pangilinan, S. J. Patton, E. K. Pease, A. Piepke, S. Powell, R. M. Preece, K. Pushkin, B. N. Ratcliff, J. Reichenbacher, L. Reichhart, C. Rhyne, J. P. Rodrigues, H. J. Rose, R. Rosero, J. S. Saba, M. Sarychev, R. W. Schnee, M. S. G. Schubnell, P. R. Scovell, S. Shaw, T. A. Shutt, C. Silva, K. Skarpaas, W. Skulski, V. N. Solovov, P. Sorensen, V. V. Sosnovtsev, I. Stancu, M. R. Stark, S. Stephenson, T. M. Stiegler, T. J. Sumner, K. Sundarnath, M. Szydagis, D. J. Taylor, W. Taylor, B. P. Tennyson, P. A. Terman, K. J. Thomas, J. A. Thomson, D. R. Tiedt, W. H. To, A. Tomás, M. Tripathi, C. E. Tull, L. Tvrznikova, S. Uvarov, J. Va'vra, M. G. D. van der Grinten, J. R. Verbus, C. O. Vuosalo, W. L. Waldron, L. Wang, R. C. Webb, W. -Z. Wei, M. While, D. T. White, T. J. Whitis, W. J. Wisniewski, M. S. Witherell, F. L. H. Wolfs, E. Woods, D. Woodward, S. D. Worm, M. Yeh, J. Yin, S. K. Young, C. Zhang

The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. Read More

We present the results of the first experimental study of ionization yield of electron recoils with energies below 100 keV produced in liquid xenon by the isotopes: 37Ar, 83mKr, 241Am, 129Xe, 131Xe. It is confirmed by a direct measurement with 37Ar isotope (2.82 keV) that the ionization yield is growing up with the energy decrease in the energy range below ~ 10 keV accordingly to the NEST predictions. Read More

A permutation is square-free if it does not contain two consecutive factors of length two or more that are order-isomorphic. A permutation is bicrucial with respect to squares if it is square-free but any extension of it to the right or to the left by any element gives a permutation that is not square-free. Bicrucial permutations with respect to squares were studied by Avgustinovich et al. Read More

2012Dec
Affiliations: 1National Nuclear Research University, MEPhI, Russia, 2National Nuclear Research University, MEPhI, Russia, 3National Research Centre Kurchatov Institute, Russia, 4National Nuclear Research University, MEPhI, Russia, 5National Nuclear Research University, MEPhI, Russia, 6National Nuclear Research University, MEPhI, Russia, 7National Nuclear Research University, MEPhI, Russia, 8National Nuclear Research University, MEPhI, Russia, 9Petersburg Nuclear Physics Institute, Russia, 10National Nuclear Research University, MEPhI, Russia, 11SSC RF Institute for Theoretical and Experimental Physics, Russia, 12National Nuclear Research University, MEPhI, Russia, 13National Nuclear Research University, MEPhI, Russia, 14National Nuclear Research University, MEPhI, Russia, 15National Nuclear Research University, MEPhI, Russia, 16National Nuclear Research University, MEPhI, Russia, 17National Nuclear Research University, MEPhI, Russia, 18National Nuclear Research University, MEPhI, Russia, 19National Nuclear Research University, MEPhI, Russia, 20National Nuclear Research University, MEPhI, Russia, 21National Nuclear Research University, MEPhI, Russia, 22National Nuclear Research University, MEPhI, Russia, 23National Nuclear Research University, MEPhI, Russia, 24National Nuclear Research University, MEPhI, Russia, 25National Nuclear Research University, MEPhI, Russia, 26National Nuclear Research University, MEPhI, Russia, 27National Research Centre Kurchatov Institute, Russia, 28National Nuclear Research University, MEPhI, Russia, 29National Nuclear Research University, MEPhI, Russia, 30National Nuclear Research University, MEPhI, Russia, 31National Research Centre Kurchatov Institute, Russia, 32National Nuclear Research University, MEPhI, Russia, 33National Research Centre Kurchatov Institute, Russia, 34National Research Centre Kurchatov Institute, Russia, 35National Nuclear Research University, MEPhI, Russia, 36National Nuclear Research University, MEPhI, Russia, 37National Nuclear Research University, MEPhI, Russia, 38National Nuclear Research University, MEPhI, Russia, 39National Nuclear Research University, MEPhI, Russia, 40National Nuclear Research University, MEPhI, Russia, 41National Nuclear Research University, MEPhI, Russia, 42National Research Centre Kurchatov Institute, Russia, 43National Research Centre Kurchatov Institute, Russia, 44National Nuclear Research University, MEPhI, Russia, 45SSC RF Institute for Theoretical and Experimental Physics, Russia

We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental sites: Kalinin Nuclear Power Plant in the Russian Federation and Spallation Neutron Source at the Oak Ridge National Laboratory in the USA. Both sites have advantages as well as limitations. Read More

Using the Luthar--Passi method, we investigate the possible orders and partial augmentations of torsion units of the normalized unit group of integral group rings of Conway simple groups $Co_1$, $Co_2$ and $Co_3$. Read More

The group $G$ is called $n$-rewritable for $n>1$, if for each sequence of $n$ elements $x_1, x_2, \dots, x_n \in G$ there exists a non-identity permutation $\sigma \in S_n$ such that $x_1 x_2 \cdots x_n = x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(n)}$. Using computers, Blyth and Robinson (1990) verified that the alternating group $A_5$ is 8-rewritable. We report on an independent verification of this statement using the computational algebra system GAP, and compare the performance of our sequential and parallel code with the original one. Read More

Using the Luthar--Passi method, we investigate the Zassenhaus and Kimmerle conjectures for normalized unit groups of integral group rings of the Held and O'Nan sporadic simple groups. We confirm the Kimmerle conjecture for the Held simple group and also derive for both groups some extra information relevant to the classical Zassenhaus conjecture. Read More

Using the Luthar--Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerle's conjecture on prime graphs. Read More

Let V(KG) be a normalised unit group of the modular group algebra of a finite p-group G over the field K of p elements. We introduce a notion of symmetric subgroups in V(KG) as subgroups invariant under the action of the classical involution of the group algebra KG. We study properties of symmetric subgroups and construct a counterexample to the conjecture by V. Read More

We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerle's conjecture on prime graphs. Read More

Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Rudvalis sporadic simple group Ru. As a consequence, for this group we confirm Kimmerle's conjecture on prime graphs. Read More

Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Higman-Sims simple sporadic group HS. As a consequence, we confirm the Kimmerle's conjecture on prime graphs for this sporadic group. Read More

We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group $M_{24}$. As a consequence, for this group we confirm Kimmerle's conjecture on prime graphs. Read More

We investigate the possible character values of torsion units of the normalized unit group of the integral group ring of Mathieu sporadic group $M_{22}$. We confirm the Kimmerle conjecture on prime graphs for this group and specify the partial augmentations for possible counterexamples to the stronger Zassenhaus conjecture. Read More

Let $K$ be field of characteristic 2 and let $G$ be a finite non-abelian 2-group with the cyclic derived subgroup $G'$, and there exists a central element $z$ of order 2 in $Z(G) \backslash G'$. We prove that the unit group of the group algebra $KG$ possesses a section isomorphic to the wreath product of a group of order 2 with the derived subgroup of the group $G$, giving for such groups a positive answer to the question of A. Shalev. Read More

We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group M12. As a consequence, we confirm for this group the Kimmerle's conjecture on prime graphs. Read More

We investigate the classical Zassenhaus conjecture for the unit group of the integral group ring of Mathieu simple group M23 using the Luthar-Passi method. This work is a continuation of the research that we carried out for Mathieu groups M11 and M12. As a consequence, for this group we confirm Kimmerle's conjecture on prime graphs. Read More

Using the Luthar--Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko sporadic simple groups. As a consequence, we obtain that the Gruenberg-Kegel graph of the Janko groups $J_1$, $J_2$ and $J_3$ is the same as that of the normalized unit group of their respective integral group ring. Read More

Using the computational algebra system GAP (http://www.gap-system.org) and the GAP package LAGUNA (http://www. Read More

Let $p$ be a prime number, $G$ be a finite $p$-group and $K$ be a field of characteristic $p$. The Modular Isomorphism Problem (MIP) asks whether the group algebra $KG$ determines the group $G$. Dealing with MIP, we investigated a question whether the nilpotency class of a finite $p$-group is determined by its modular group algebra over the field of $p$ elements. Read More

We investigated the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the simple Mathieu group M11. As a consequence, for this group we confirm the conjecture by Kimmerle about prime graphs. Read More

Let G be a 2-group of order 2^n, n>5, and nilpotency class n-2. The invariants of such groups determined by their group algebras over the field of two elements are given in the paper. Read More

We study the unit group of the modular group algebra KG, where G is a 2-group of maximal class. We prove that the unit group of KG possesses a section isomorphic to the wreath product of a group of order two with the commutator subgroup of the group G. Read More