# A. Ferroglia

## Publications Authored By A. Ferroglia

We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Z boson at the Large Hadron Collider to next-to-next-to-leading logarithmic accuracy. By means of an in-house parton level Monte Carlo code we evaluate the resummation formula for the total cross section and several differential distributions at a center-of-mass energy of 13 TeV, and we match these calculations to next-to-leading order results. Read More

We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at the Large Hadron Collider. Starting from a soft-gluon resummation formula derived in previous work, we develop a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with differential distributions. We use this tool to study the phenomenological impact of the resummation to next-to-next-to-leading logarithmic (NNLL) accuracy, finding that these corrections increase the total cross section and the differential distributions with respect to NLO calculations of the same observables. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, R. Costa

^{69}, D. Curtin

^{70}, M. Dall'Osso

^{71}, A. David

^{72}, S. Dawson

^{73}, J. de Blas

^{74}, W. de Boer

^{75}, P. de Castro Manzano

^{76}, C. Degrande

^{77}, R. L. Delgado

^{78}, F. Demartin

^{79}, A. Denner

^{80}, B. Di Micco

^{81}, R. Di Nardo

^{82}, S. Dittmaier

^{83}, A. Dobado

^{84}, T. Dorigo

^{85}, F. A. Dreyer

^{86}, M. Dührssen

^{87}, C. Duhr

^{88}, F. Dulat

^{89}, K. Ecker

^{90}, K. Ellis

^{91}, U. Ellwanger

^{92}, C. Englert

^{93}, D. Espriu

^{94}, A. Falkowski

^{95}, L. Fayard

^{96}, R. Feger

^{97}, G. Ferrera

^{98}, A. Ferroglia

^{99}, N. Fidanza

^{100}, T. Figy

^{101}, M. Flechl

^{102}, D. Fontes

^{103}, S. Forte

^{104}, P. Francavilla

^{105}, E. Franco

^{106}, R. Frederix

^{107}, A. Freitas

^{108}, F. F. Freitas

^{109}, F. Frensch

^{110}, S. Frixione

^{111}, B. Fuks

^{112}, E. Furlan

^{113}, S. Gadatsch

^{114}, J. Gao

^{115}, Y. Gao

^{116}, M. V. Garzelli

^{117}, T. Gehrmann

^{118}, R. Gerosa

^{119}, M. Ghezzi

^{120}, D. Ghosh

^{121}, S. Gieseke

^{122}, D. Gillberg

^{123}, G. F. Giudice

^{124}, E. W. N. Glover

^{125}, F. Goertz

^{126}, D. Gonçalves

^{127}, J. Gonzalez-Fraile

^{128}, M. Gorbahn

^{129}, S. Gori

^{130}, C. A. Gottardo

^{131}, M. Gouzevitch

^{132}, P. Govoni

^{133}, D. Gray

^{134}, M. Grazzini

^{135}, N. Greiner

^{136}, A. Greljo

^{137}, J. Grigo

^{138}, A. V. Gritsan

^{139}, R. Gröber

^{140}, S. Guindon

^{141}, H. E. Haber

^{142}, C. Han

^{143}, T. Han

^{144}, R. Harlander

^{145}, M. A. Harrendorf

^{146}, H. B. Hartanto

^{147}, C. Hays

^{148}, S. Heinemeyer

^{149}, G. Heinrich

^{150}, M. Herrero

^{151}, F. Herzog

^{152}, B. Hespel

^{153}, V. Hirschi

^{154}, S. Hoeche

^{155}, S. Honeywell

^{156}, S. J. Huber

^{157}, C. Hugonie

^{158}, J. Huston

^{159}, A. Ilnicka

^{160}, G. Isidori

^{161}, B. Jäger

^{162}, M. Jaquier

^{163}, S. P. Jones

^{164}, A. Juste

^{165}, S. Kallweit

^{166}, A. Kaluza

^{167}, A. Kardos

^{168}, A. Karlberg

^{169}, Z. Kassabov

^{170}, N. Kauer

^{171}, D. I. Kazakov

^{172}, M. Kerner

^{173}, W. Kilian

^{174}, F. Kling

^{175}, K. Köneke

^{176}, R. Kogler

^{177}, R. Konoplich

^{178}, S. Kortner

^{179}, S. Kraml

^{180}, C. Krause

^{181}, F. Krauss

^{182}, M. Krawczyk

^{183}, A. Kulesza

^{184}, S. Kuttimalai

^{185}, R. Lane

^{186}, A. Lazopoulos

^{187}, G. Lee

^{188}, P. Lenzi

^{189}, I. M. Lewis

^{190}, Y. Li

^{191}, S. Liebler

^{192}, J. Lindert

^{193}, X. Liu

^{194}, Z. Liu

^{195}, F. J. Llanes-Estrada

^{196}, H. E. Logan

^{197}, D. Lopez-Val

^{198}, I. Low

^{199}, G. Luisoni

^{200}, P. Maierhöfer

^{201}, E. Maina

^{202}, B. Mansoulié

^{203}, H. Mantler

^{204}, M. Mantoani

^{205}, A. C. Marini

^{206}, V. I. Martinez Outschoorn

^{207}, S. Marzani

^{208}, D. Marzocca

^{209}, A. Massironi

^{210}, K. Mawatari

^{211}, J. Mazzitelli

^{212}, A. McCarn

^{213}, B. Mellado

^{214}, K. Melnikov

^{215}, S. B. Menari

^{216}, L. Merlo

^{217}, C. Meyer

^{218}, P. Milenovic

^{219}, K. Mimasu

^{220}, S. Mishima

^{221}, B. Mistlberger

^{222}, S. -O. Moch

^{223}, A. Mohammadi

^{224}, P. F. Monni

^{225}, G. Montagna

^{226}, M. Moreno Llácer

^{227}, N. Moretti

^{228}, S. Moretti

^{229}, L. Motyka

^{230}, A. Mück

^{231}, M. Mühlleitner

^{232}, S. Munir

^{233}, P. Musella

^{234}, P. Nadolsky

^{235}, D. Napoletano

^{236}, M. Nebot

^{237}, C. Neu

^{238}, M. Neubert

^{239}, R. Nevzorov

^{240}, O. Nicrosini

^{241}, J. Nielsen

^{242}, K. Nikolopoulos

^{243}, J. M. No

^{244}, C. O'Brien

^{245}, T. Ohl

^{246}, C. Oleari

^{247}, T. Orimoto

^{248}, D. Pagani

^{249}, C. E. Pandini

^{250}, A. Papaefstathiou

^{251}, A. S. Papanastasiou

^{252}, G. Passarino

^{253}, B. D. Pecjak

^{254}, M. Pelliccioni

^{255}, G. Perez

^{256}, L. Perrozzi

^{257}, F. Petriello

^{258}, G. Petrucciani

^{259}, E. Pianori

^{260}, F. Piccinini

^{261}, M. Pierini

^{262}, A. Pilkington

^{263}, S. Plätzer

^{264}, T. Plehn

^{265}, R. Podskubka

^{266}, C. T. Potter

^{267}, S. Pozzorini

^{268}, K. Prokofiev

^{269}, A. Pukhov

^{270}, I. Puljak

^{271}, M. Queitsch-Maitland

^{272}, J. Quevillon

^{273}, D. Rathlev

^{274}, M. Rauch

^{275}, E. Re

^{276}, M. N. Rebelo

^{277}, D. Rebuzzi

^{278}, L. Reina

^{279}, C. Reuschle

^{280}, J. Reuter

^{281}, M. Riembau

^{282}, F. Riva

^{283}, A. Rizzi

^{284}, T. Robens

^{285}, R. Röntsch

^{286}, J. Rojo

^{287}, J. C. Romão

^{288}, N. Rompotis

^{289}, J. Roskes

^{290}, R. Roth

^{291}, G. P. Salam

^{292}, R. Salerno

^{293}, M. O. P. Sampaio

^{294}, R. Santos

^{295}, V. Sanz

^{296}, J. J. Sanz-Cillero

^{297}, H. Sargsyan

^{298}, U. Sarica

^{299}, P. Schichtel

^{300}, J. Schlenk

^{301}, T. Schmidt

^{302}, C. Schmitt

^{303}, M. Schönherr

^{304}, U. Schubert

^{305}, M. Schulze

^{306}, S. Sekula

^{307}, M. Sekulla

^{308}, E. Shabalina

^{309}, H. S. Shao

^{310}, J. Shelton

^{311}, C. H. Shepherd-Themistocleous

^{312}, S. Y. Shim

^{313}, F. Siegert

^{314}, A. Signer

^{315}, J. P. Silva

^{316}, L. Silvestrini

^{317}, M. Sjodahl

^{318}, P. Slavich

^{319}, M. Slawinska

^{320}, L. Soffi

^{321}, M. Spannowsky

^{322}, C. Speckner

^{323}, D. M. Sperka

^{324}, M. Spira

^{325}, O. Stål

^{326}, F. Staub

^{327}, T. Stebel

^{328}, T. Stefaniak

^{329}, M. Steinhauser

^{330}, I. W. Stewart

^{331}, M. J. Strassler

^{332}, J. Streicher

^{333}, D. M. Strom

^{334}, S. Su

^{335}, X. Sun

^{336}, F. J. Tackmann

^{337}, K. Tackmann

^{338}, A. M. Teixeira

^{339}, R. Teixeira de Lima

^{340}, V. Theeuwes

^{341}, R. Thorne

^{342}, D. Tommasini

^{343}, P. Torrielli

^{344}, M. Tosi

^{345}, F. Tramontano

^{346}, Z. Trócsányi

^{347}, M. Trott

^{348}, I. Tsinikos

^{349}, M. Ubiali

^{350}, P. Vanlaer

^{351}, W. Verkerke

^{352}, A. Vicini

^{353}, L. Viliani

^{354}, E. Vryonidou

^{355}, D. Wackeroth

^{356}, C. E. M. Wagner

^{357}, J. Wang

^{358}, S. Wayand

^{359}, G. Weiglein

^{360}, C. Weiss

^{361}, M. Wiesemann

^{362}, C. Williams

^{363}, J. Winter

^{364}, D. Winterbottom

^{365}, R. Wolf

^{366}, M. Xiao

^{367}, L. L. Yang

^{368}, R. Yohay

^{369}, S. P. Y. Yuen

^{370}, G. Zanderighi

^{371}, M. Zaro

^{372}, D. Zeppenfeld

^{373}, R. Ziegler

^{374}, T. Zirke

^{375}, J. Zupan

^{376}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group,

^{375}The LHC Higgs Cross Section Working Group,

^{376}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We consider soft gluon emission corrections to the production of a top-antitop pair in association with a W boson at the Large Hadron Collider. We obtain a soft-gluon resummation formula for this production process which is valid up to next-to-next-to-leading logarithmic accuracy. We evaluate the soft gluon resummation formula in Mellin space by means of an in-house parton level Monte Carlo code which allows us to obtain predictions for the total cross section as well as for several differential distributions. Read More

We present new results for QCD corrections to the top-pair invariant mass and top-quark $p_T$ distributions in boosted top-quark pair production at hadron colliders. They are derived from a formalism which allows the joint resummation of soft and small-mass logarithms at NNLL$'$ order, thus taking into account all potentially large corrections in the boosted regime, where the partonic center-of-mass energy is parameterically much larger than the mass of the top quark. We match these results with those from standard soft-gluon resummation away from the small-mass limit to NNLL order and also with NLO fixed-order calculations, so that our results are valid in the maximum possible range of phase space. Read More

We consider soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at hadron colliders. In particular, we present a soft-gluon resummation formula for this production process and gather all elements needed to evaluate it at next-to-next-to-leading logarithmic order. We employ these results to obtain approximate next-to-next-to-leading order (NNLO) formulas, and implement them in a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with arbitrary differential distributions. Read More

Weak radiative decays of the B mesons belong to the most important flavor changing processes that provide constraints on physics at the TeV scale. In the derivation of such constraints, accurate standard model predictions for the inclusive branching ratios play a crucial role. In the current Letter we present an update of these predictions, incorporating all our results for the O(alpha_s^2) and lower-order perturbative corrections that have been calculated after 2006. Read More

These lectures provide an introduction to Soft-Collinear Effective Theory. After discussing the expansion of Feynman diagrams around the high-energy limit, the effective Lagrangian is constructed, first for a scalar theory, then for QCD. The underlying concepts are illustrated with the Sudakov form factor, i. Read More

We derive the hard functions for all 2->2 processes in massless QCD up to next-to-next-to-leading order (NNLO) in the strong coupling constant. By employing the known one- and two-loop helicity amplitudes for these processes, we obtain analytic expressions for the ultraviolet and infrared finite, minimally subtracted hard functions, which are matrices in color space. These hard functions will be useful in carrying out higher-order resummations in processes such as dijet and highly energetic top-quark pair production by means of soft-collinear effective theory methods. Read More

We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribution and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. Read More

If supersymmetry near the TeV scale is realized in Nature, the pair production of scalar top squarks is expected to be observable at the Large Hadron Collider. Recently, effective field-theory methods were employed to obtain approximate predictions for the cross section for this process, which include soft-gluon emission effects up to next-to-next-to-leading order (NNLO) in perturbation theory. In this work we employ the same techniques to resum soft-gluon emission effects to all orders in perturbation theory and with next-to-next-to-logarithmic (NNLL) accuracy. Read More

**Authors:**K. Agashe, R. Erbacher, C. E. Gerber, K. Melnikov, R. Schwienhorst, A. Mitov, M. Vos, S. Wimpenny, J. Adelman, M. Baumgart, A. Garcia-Bellido, A. Loginov, A. Jung, M. Schulze, J. Shelton, N. Craig, M. Velasco, T. Golling, J. Hubisz, A. Ivanov, M. Perelstein, S. Chekanov, J. Dolen, J. Pilot, R. Pöschl, B. Tweedie, S. Alioli, B. Alvarez-Gonzalez, D. Amidei, T. Andeen, A. Arce, B. Auerbach, A. Avetisyan, M. Backovic, Y. Bai, M. Begel, S. Berge, C. Bernard, C. Bernius, S. Bhattacharya, K. Black, A. Blondel, K. Bloom, T. Bose, J. Boudreau, J. Brau, A. Broggio, G. Brooijmans, E. Brost, R. Calkins, D. Chakraborty, T. Childress, G. Choudalakis, V. Coco, J. S. Conway, C. Degrande, A. Delannoy, F. Deliot, L. Dell'Asta, E. Drueke, B. Dutta, A. Effron, K. Ellis, J. Erdmann, J. Evans, C. Feng, E. Feng, A. Ferroglia, K. Finelli, W. Flanagan, I. Fleck, A. Freitas, F. Garberson, R. Gonzalez Suarez, M. L. Graesser, N. Graf, Z. Greenwood, J. George, C. Group, A. Gurrola, G. Hammad, T. Han, Z. Han, U. Heintz, S. Hoeche, T. Horiguchi, I. Iashvili, A. Ismail, S. Jain, P. Janot, W. Johns, J. Joshi, A. Juste, T. Kamon, C. Kao, Y. Kats, A. Katz, M. Kaur, R. Kehoe, W. Keung, S. Khalil, A. Khanov, A. Kharchilava, N. Kidonakis, C. Kilic, N. Kolev, A. Kotwal, J. Kraus, D. Krohn, M. Kruse, A. Kumar, S. Lee, E. Luiggi, S. Mantry, A. Melo, D. Miller, G. Moortgat-Pick, M. Narain, N. Odell, Y. Oksuzian, M. Oreglia, A. Penin, Y. Peters, C. Pollard, S. Poss, H. B. Prosper S. Rappoccio, S. Redford, M. Reece, F. Rizatdinova, P. Roloff, R. Ruiz, M. Saleem, B. Schoenrock, C. Schwanenberger, T. Schwarz, K. Seidel, E. Shabalina, P. Sheldon, F. Simon, K. Sinha, P. Skands, P. Skubik, G. Sterman, D. Stolarski, J. Strube, J. Stupak, S. Su, M. Tesar, S. Thomas, E. Thompson, P. Tipton, E. Varnes, N. Vignaroli, J. Virzi, M. Vogel, D. Walker, K. Wang, B. Webber, J. D. Wells, S. Westhoff, D. Whiteson, M. Williams, S. Wu, U. Yang, H. Yokoya, H. Yoo, H. Zhang, N. Zhou, H. Zhu, J. Zupan

This report summarizes the work of the Energy Frontier Top Quark working group of the 2013 Community Summer Study (Snowmass). Read More

We study single-particle inclusive (1PI) distributions in top-quark pair production at hadron colliders, working in the highly boosted regime where the top-quark p_T is much larger than its mass. In particular, we derive a novel factorization formula valid in the small-mass and soft limits of the differential partonic cross section. This provides a framework for the simultaneous resummation of soft gluon corrections and small-mass logarithms, and also an efficient means of obtaining higher-order corrections to the differential cross section in this limit. Read More

We calculate the two-loop corrections to heavy-quark pair production in the gluon fusion channel which arise from diagrams involving a closed light-quark loop. The calculation is carried out by keeping the exact dependence on the heavy-quark mass. The analytic results are written in terms of logarithms, classical polylogarithms Li_n (n=2,3,4), and genuine multiple polylogarithms Li_{2,2}. Read More

We derive closed expressions and useful expansions for the contributions of the tree-level W-boson propagator to the the muon and tau leptonic decay rates. Calling M and m the masses of the initial and final charged leptons, our results in the limit m=0 are valid to all orders in M^2/M_W^2. In the terms of O(m_j^2/M_W^2) (m_j=M,m), our leading corrections, of O(M^2/M_W^2), agree with the canonical value (3/5) M^2/M_W^2, while the coefficient of our subleading contributions, of O(m^2/M_W^2), differs from that reported in the recent literature. Read More

We obtain a soft plus virtual approximation to the NNLO QCD contributions to the top-pair invariant mass distribution at hadron colliders. It is valid up to corrections of order m_t^2/M^2, with M the pair invariant mass. This is currently the most complete QCD calculation for a differential cross section in top-quark pair production, and is useful for describing the high invariant mass region characteristic of boosted top quarks. Read More

If the minimal supersymmetric standard model at scales of around 1 TeV is realized in nature, the total top-squark pair production cross section should be measurable at the CERN Large Hadron Collider. In this work we present precise predictions for this observable, which are based upon approximate NNLO formulas obtained using soft-collinear effective theory methods. Read More

This talk reviews the Standard Model predictions for the top-quark forward backward and charge asymmetries measured at the Tevatron and at the LHC. Read More

Assuming that the recently discovered particle at LHC is the Standard Theory (ST) Higgs Boson, we compare the ST predictions of M_W and Sin^2 theta^lept_eff with the experimental values of these basic observables. While the Sin^2 theta^lept_eff prediction is in excellent agreement with its experimental value, that of M_W shows a 1.33 sigma deviation. Read More

The aim of this article is to review the very important role played by radiative corrections in precision electroweak physics, in the framework of both the Fermi Theory of Weak Interactions and the Standard Theory of Particle Physics. Important theoretical developments, closely connected with the study and applications of the radiative corrections, are also reviewed. The role of radiative corrections in the analysis of some important signals of new physics is also discussed. Read More

At high values of the pair invariant mass the differential cross section for top-quark pair production at hadron colliders factorizes into soft, hard, and fragmentation functions. In this paper we calculate the next-to-next-to-leading-order (NNLO) corrections to the soft function appearing in this factorization formula, thus providing the final piece needed to evaluate at NNLO the differential cross section in the virtual plus soft approximation in the large invariant-mass limit. Technically, this amounts to evaluating the vacuum expectation value of a soft Wilson loop operator built out of light-like Wilson lines for each of the four partons participating in the hard scattering process, with a certain constraint on the total energy of the soft radiation. Read More

We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set up a factorization formalism appropriate for describing the differential partonic cross section in the double soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-leading order formulas for the differential cross section in the soft limit, pointing out that they offer a simplified calculational procedure for determining the currently unknown delta-function terms in the limit of high invariant mass. Read More

The current theoretical predictions for the observables related to the top-quark pair and the single-top productions at hadron colliders are briefly reviewed. The theoretical predictions are compared to the experimental measurements carried out at the Tevatron and the LHC. Read More

We make use of recent results in effective theory and higher-order perturbative calculations to improve the theoretical predictions of the QCD contribution to the top-quark pair production forward-backward asymmetry at the Tevatron. In particular, we supplement the fixed-order NLO calculation with higher-order corrections from soft gluon resummation at NNLL accuracy performed in two different kinematic schemes, which allows us to make improved predictions for the asymmetry in the $p\bar p$ and $t\bar t$ rest frames as a function of the rapidity and invariant mass of the $t\bar t$ pair. Furthermore, we provide binned results which can be compared with the recent measurements of the forward-backward asymmetry in events with a large pair invariant mass or rapidity difference. Read More

**Authors:**Valentin Ahrens

^{1}, Andrea Ferroglia

^{2}, Matthias Neubert

^{3}, Ben D. Pecjak

^{4}, Li Lin Yang

^{5}

**Affiliations:**

^{1}Mainz U.,

^{2}NY City Colleage of Tech.,

^{3}Mainz U.,

^{4}Mainz U.,

^{5}Zurich U.

**Category:**High Energy Physics - Phenomenology

We make use of recent results in effective theory and higher-order perturbative calculations to improve the theoretical predictions of the top-quark pair production cross section at hadron colliders. In particular, we supplement the fixed-order NLO calculation with higher-order corrections from soft gluon resummation at NNLL accuracy. Uncertainties due to power corrections to the soft limit are estimated by combining results from single-particle inclusive and pair invariant-mass kinematics. Read More

We use techniques from soft-collinear effective theory (SCET) to derive renormalization-group improved predictions for single-particle inclusive (1PI) observables in top-quark pair production at hadron colliders. In particular, we study the top-quark transverse-momentum and rapidity distributions, the forward-backward asymmetry at the Tevatron, and the total cross section at NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed order. We also perform a detailed analysis of power corrections to the leading terms in the threshold expansion of the partonic hard-scattering kernels. Read More

The status of the theoretical predictions for the top-anti top production in hadronic collisions is shortly reviewed, paying a articular attention to the analytic calculation of the two-loop QCD corrections to the parton-level matrix elements. Read More

We evaluate the two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section in the gluon fusion channel. We obtain an analytic expression, which is valid for any value of the Mandelstam invariants s and t and of the heavy-quark mass m. Our findings agree with previous analytic results in the small-mass limit and with recent results for the coefficients of the IR poles. Read More

We calculate the fermionic corrections to the photon-energy spectrum of Bbar -> X_sgamma which arise from the self-interference of the chromomagnetic dipole operator Q_8 at next-to-next-to-leading order by applying naive non-abelianization. The resulting O(beta_0 alpha_s^2) correction to the Bbar -> X_sgamma branching ratio amounts to a relative shift of +0.12% (+0. Read More

Infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension matrix, which is also an essential ingredient for the resummation of large logarithms due to soft gluon emissions. We report a recent analytical calculation of the anomalous dimension matrix with both massless and massive partons at two-loop level, which describes the two-loop infrared singularities of any scattering amplitudes with an arbitrary number of massless and massive partons, and also enables soft gluon resummation at next-to-next-to-leading-logarithmic order. As an application, we calculate the infrared poles in the q qbar -> t tbar and gg -> t tbar scattering amplitudes at two-loop order. Read More

We report on recent calculations of the differential cross section for top-quark pair production at hadron colliders. The results are differential with respect to the top-pair invariant mass and to the partonic scattering angle. In these calculations, which were carried out by employing soft-collinear effective theory techniques, we resummed threshold logarithms up to next-to-next-to-leading logarithmic order. Read More

We calculate the set of O(alpha_s^2) corrections to the branching ratio and to the photon energy spectrum of the decay process B -> X_s gamma originating from the interference of diagrams involving the electromagnetic dipole operator O_7 with diagrams involving the chromomagnetic dipole operator O_8. The corrections evaluated here are one of the elements needed to complete the calculations of the B -> X_s gamma branching ratio at next-to-next-to-leading order in QCD. We conclude that this set of corrections does not change the central value of the Standard Model prediction for Br(B -> X_s gamma) by more than 1 %. Read More

Precision predictions for phenomenologically interesting observables such as the t-tbar invariant mass distribution and forward-backward asymmetry in top-quark pair production at hadron colliders require control over the differential cross section in perturbative QCD. In this paper we improve existing calculations of the doubly differential cross section in the invariant mass and scattering angle by using techniques from soft-collinear effective theory to perform an NNLL resummation of threshold logarithms, which become large when the invariant mass M of the top-quark pair approaches the partonic center-of-mass energy. We also derive an approximate formula for the differential cross section at NNLO in fixed-order perturbation theory, which completely determines the coefficients multiplying the singular plus distributions. Read More

We calculate the leading O(alpha_s^4) contributions to the invariant mass distribution of top-quark pairs produced at the Tevatron and LHC, in the limit where the invariant mass of the t-tbar pair approaches the partonic center-of-mass energy. Our results determine at NNLO in alpha_s the coefficients of all singular plus distributions and scale-dependent logarithms in the differential partonic cross sections for q-qbar, gg -> t-tbar + X. A numerical analysis showing the effects of the NNLO corrections on the central values and scale dependence of the invariant mass distribution is performed. Read More

**Authors:**S. Actis, A. Arbuzov, G. Balossini, P. Beltrame, C. Bignamini, R. Bonciani, C. M. Carloni Calame, V. Cherepanov, M. Czakon, H. Czyz, A. Denig, S. Eidelman, G. V. Fedotovich, A. Ferroglia, J. Gluza, A. Grzelinska, M. Gunia, A. Hafner, F. Ignatov, S. Jadach, F. Jegerlehner, A. Kalinowski, W. Kluge, A. Korchin, J. H. Kuhn, E. A. Kuraev, P. Lukin, P. Mastrolia, G. Montagna, S. E. Muller, F. Nguyen, O. Nicrosini, D. Nomura, G. Pakhlova, G. Pancheri, M. Passera, A. Penin, F. Piccinini, W. Placzek, T. Przedzinski, E. Remiddi, T. Riemann, G. Rodrigo, P. Roig, O. Shekhovtsova, C. P. Shen, A. L. Sibidanov, T. Teubner, L. Trentadue, G. Venanzoni, J. J. van der Bij, P. Wang, B. F. L. Ward, Z. Was, M. Worek, C. Z. Yuan

We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e+e- colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. Read More

The study of the properties of the top quark is one of the main goals of the Large Hadron Collider (LHC) physics program. The experimental precision expected at the LHC requires the calculation of several top-quark related observables beyond leading order in the strong coupling constant. In this work we briefly review the status of the theoretical predictions for the top-quark production processes at hadron colliders. Read More

**Affiliations:**

^{1}Johannes Gutenberg University Mainz,

^{2}Johannes Gutenberg University Mainz,

^{3}Johannes Gutenberg University Mainz,

^{4}Johannes Gutenberg University Mainz

**Category:**High Energy Physics - Phenomenology

The infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension \Gamma, which is a matrix in color space and depends on the momenta and masses of the external partons. It has recently been shown that in cases where there are at least two massive partons involved in the scattering process, starting at two-loop order \Gamma receives contributions involving color and momentum correlations between three (and more) partons. The three-parton correlations can be described by two universal functions F_1 and f_2. Read More

**Affiliations:**

^{1}Johannes Gutenberg University Mainz,

^{2}Johannes Gutenberg University Mainz,

^{3}Johannes Gutenberg University Mainz,

^{4}Johannes Gutenberg University Mainz

**Category:**High Energy Physics - Phenomenology

We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely specify the structure of three-parton correlations in the soft anomalous-dimension matrix, at two-loop order in closed analytic form. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. Read More

We evaluate the planar two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section, in the quark-antiquark annihilation channel. We obtain the leading color coefficient in an analytic form, in terms of one- and two-dimensional harmonic polylogarithms of maximal weight 4. The result is valid for arbitrary values of the Mandelstam invariants s and t, and of the heavy-quark mass m. Read More

In this short review, the calculation of the next-to-next-to-leading order QCD corrections to the inclusive radiative decay B -> X_s gamma is described. I summarize the salient features of the calculational framework adopted, discuss the results obtained in the last few years, and indicate the technical tools that made the NNLO calculations possible. I conclude by comparing the current NNLO theoretical estimate for the branching ratio with the experimental measurement and by briefly discussing the size and origin of the residual theoretical uncertainty. Read More

We describe the analytic calculation of the fermionic two-loop QCD corrections to the heavy-quark pair production process in the quark-antiquark channel. Read More

We present an analytic expression for the two-loop QCD corrections to the decay process b -> u W^*, where b and u are a massive and massless quark, respectively, while W^* is an off-shell charged weak boson. Since the W-boson can subsequently decay in a lepton anti-neutrino pair, the results of this paper are a first step towards a fully analytic computation of differential distributions for the semileptonic decay of a b-quark. The latter partonic process plays a crucial role in the study of inclusive semileptonic charmless decays of B-mesons. Read More

We briefly review the status of the calculation of next-to-next-to-leading order corrections to large angle Bhabha scattering in pure QED. In particular, we focus on the analytic calculation of the two-loop virtual corrections involving a heavy-flavor fermion loop, which was recently completed. We conclude by assessing the numerical impact of these corrections on the Bhabha scattering cross section at colliders operating at a center of mass energy of 1 GeV and at the future ILC. Read More

We evaluate the fermionic two-loop QCD corrections to the heavy-quark pair production process in the quark-antiquark channel. We obtain analytic results which are valid for any value of the Mandelstam invariants s and t, and of the heavy quark mass m. Our findings confirm previous results for the analytic evaluation in the small-mass limit and numerical results for the exact amplitude. Read More

**Category:**High Energy Physics - Phenomenology

We review the status of the calculation of next-to-next-to-leading order corrections to large angle Bhabha scattering in pure QED. After discussing the electron-loop and photonic corrections, we focus on the recently calculated two-loop virtual corrections involving a heavy-flavor fermion loop. We conclude by assessing the numerical impact of these corrections on the Bhabha scattering cross section at colliders operating at a center of mass energy of about 1-GeV. Read More

We describe in detail the calculation of the two-loop corrections to the QED Bhabha scattering cross section due to the vacuum polarization by heavy fermions. Our approach eliminates one mass scale from the most challenging part of the calculation and allows us to obtain the corrections in a closed analytical form. The result is valid for arbitrary values of the heavy fermion mass and the Mandelstam invariants, as long as s,t,u >> m_e^2. Read More

We evaluate the two-loop QED corrections to the Bhabha scattering cross section which involve the vacuum polarization by heavy fermions of arbitrary mass m_f >> m_e. The results are valid for generic values of the Mandelstam invariants s,t,u >> m_e^2. Read More

In this paper the building blocks for the two-loop renormalization of the Standard Model are introduced with a comprehensive discussion of the special vertices induced in the Lagrangian by a particular diagonalization of the neutral sector and by two alternative treatments of the Higgs tadpoles. Dyson resummed propagators for the gauge bosons are derived, and two-loop Ward-Slavnov-Taylor identities are discussed. In part II, the complete set of counterterms needed for the two-loop renormalization will be derived. Read More

**Category:**High Energy Physics - Phenomenology

We consider the extension of the standard model with an arbitrary number of U(1) gauge fields coupled to baryon-minus-lepton number and/or hypercharge. Under the assumption that A^b_FB from the LEP1 experiment is an unlucky fluctuation, we find moderate evidence for the presence of such fields in the precision electroweak data. A relatively large range of the Higgs boson mass is allowed. Read More

Combining our results for various O(alpha_s^2) corrections to the weak radiative B-meson decay, we are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in QCD. We find BR(B -> X_s gamma) = (3.15 +_ 0. Read More