A. Ferroglia

A. Ferroglia
Are you A. Ferroglia?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Ferroglia
Affiliation
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (50)
 
High Energy Physics - Experiment (5)
 
High Energy Physics - Theory (1)

Publications Authored By A. Ferroglia

We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Z boson at the Large Hadron Collider to next-to-next-to-leading logarithmic accuracy. By means of an in-house parton level Monte Carlo code we evaluate the resummation formula for the total cross section and several differential distributions at a center-of-mass energy of 13 TeV, and we match these calculations to next-to-leading order results. Read More

We study the resummation of soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at the Large Hadron Collider. Starting from a soft-gluon resummation formula derived in previous work, we develop a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with differential distributions. We use this tool to study the phenomenological impact of the resummation to next-to-next-to-leading logarithmic (NNLL) accuracy, finding that these corrections increase the total cross section and the differential distributions with respect to NLO calculations of the same observables. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We consider soft gluon emission corrections to the production of a top-antitop pair in association with a W boson at the Large Hadron Collider. We obtain a soft-gluon resummation formula for this production process which is valid up to next-to-next-to-leading logarithmic accuracy. We evaluate the soft gluon resummation formula in Mellin space by means of an in-house parton level Monte Carlo code which allows us to obtain predictions for the total cross section as well as for several differential distributions. Read More

We present new results for QCD corrections to the top-pair invariant mass and top-quark $p_T$ distributions in boosted top-quark pair production at hadron colliders. They are derived from a formalism which allows the joint resummation of soft and small-mass logarithms at NNLL$'$ order, thus taking into account all potentially large corrections in the boosted regime, where the partonic center-of-mass energy is parameterically much larger than the mass of the top quark. We match these results with those from standard soft-gluon resummation away from the small-mass limit to NNLL order and also with NLO fixed-order calculations, so that our results are valid in the maximum possible range of phase space. Read More

We consider soft gluon emission corrections to the production of a top-antitop pair in association with a Higgs boson at hadron colliders. In particular, we present a soft-gluon resummation formula for this production process and gather all elements needed to evaluate it at next-to-next-to-leading logarithmic order. We employ these results to obtain approximate next-to-next-to-leading order (NNLO) formulas, and implement them in a bespoke parton-level Monte Carlo program which can be used to calculate the total cross section along with arbitrary differential distributions. Read More

Weak radiative decays of the B mesons belong to the most important flavor changing processes that provide constraints on physics at the TeV scale. In the derivation of such constraints, accurate standard model predictions for the inclusive branching ratios play a crucial role. In the current Letter we present an update of these predictions, incorporating all our results for the O(alpha_s^2) and lower-order perturbative corrections that have been calculated after 2006. Read More

These lectures provide an introduction to Soft-Collinear Effective Theory. After discussing the expansion of Feynman diagrams around the high-energy limit, the effective Lagrangian is constructed, first for a scalar theory, then for QCD. The underlying concepts are illustrated with the Sudakov form factor, i. Read More

We derive the hard functions for all 2->2 processes in massless QCD up to next-to-next-to-leading order (NNLO) in the strong coupling constant. By employing the known one- and two-loop helicity amplitudes for these processes, we obtain analytic expressions for the ultraviolet and infrared finite, minimally subtracted hard functions, which are matrices in color space. These hard functions will be useful in carrying out higher-order resummations in processes such as dijet and highly energetic top-quark pair production by means of soft-collinear effective theory methods. Read More

We review a Soft Collinear Effective Theory approach to the study of factorization and resummation of QCD effects in top-quark pair production. In particular, we consider differential cross sections such as the top-quark pair invariant mass distribution and the top-quark transverse momentum and rapidity distributions. Furthermore, we focus our attention on the large invariant mass and large transverse momentum kinematic regions, characteristic of boosted top quarks. Read More

If supersymmetry near the TeV scale is realized in Nature, the pair production of scalar top squarks is expected to be observable at the Large Hadron Collider. Recently, effective field-theory methods were employed to obtain approximate predictions for the cross section for this process, which include soft-gluon emission effects up to next-to-next-to-leading order (NNLO) in perturbation theory. In this work we employ the same techniques to resum soft-gluon emission effects to all orders in perturbation theory and with next-to-next-to-logarithmic (NNLL) accuracy. Read More

2013Nov
Authors: K. Agashe, R. Erbacher, C. E. Gerber, K. Melnikov, R. Schwienhorst, A. Mitov, M. Vos, S. Wimpenny, J. Adelman, M. Baumgart, A. Garcia-Bellido, A. Loginov, A. Jung, M. Schulze, J. Shelton, N. Craig, M. Velasco, T. Golling, J. Hubisz, A. Ivanov, M. Perelstein, S. Chekanov, J. Dolen, J. Pilot, R. Pöschl, B. Tweedie, S. Alioli, B. Alvarez-Gonzalez, D. Amidei, T. Andeen, A. Arce, B. Auerbach, A. Avetisyan, M. Backovic, Y. Bai, M. Begel, S. Berge, C. Bernard, C. Bernius, S. Bhattacharya, K. Black, A. Blondel, K. Bloom, T. Bose, J. Boudreau, J. Brau, A. Broggio, G. Brooijmans, E. Brost, R. Calkins, D. Chakraborty, T. Childress, G. Choudalakis, V. Coco, J. S. Conway, C. Degrande, A. Delannoy, F. Deliot, L. Dell'Asta, E. Drueke, B. Dutta, A. Effron, K. Ellis, J. Erdmann, J. Evans, C. Feng, E. Feng, A. Ferroglia, K. Finelli, W. Flanagan, I. Fleck, A. Freitas, F. Garberson, R. Gonzalez Suarez, M. L. Graesser, N. Graf, Z. Greenwood, J. George, C. Group, A. Gurrola, G. Hammad, T. Han, Z. Han, U. Heintz, S. Hoeche, T. Horiguchi, I. Iashvili, A. Ismail, S. Jain, P. Janot, W. Johns, J. Joshi, A. Juste, T. Kamon, C. Kao, Y. Kats, A. Katz, M. Kaur, R. Kehoe, W. Keung, S. Khalil, A. Khanov, A. Kharchilava, N. Kidonakis, C. Kilic, N. Kolev, A. Kotwal, J. Kraus, D. Krohn, M. Kruse, A. Kumar, S. Lee, E. Luiggi, S. Mantry, A. Melo, D. Miller, G. Moortgat-Pick, M. Narain, N. Odell, Y. Oksuzian, M. Oreglia, A. Penin, Y. Peters, C. Pollard, S. Poss, H. B. Prosper S. Rappoccio, S. Redford, M. Reece, F. Rizatdinova, P. Roloff, R. Ruiz, M. Saleem, B. Schoenrock, C. Schwanenberger, T. Schwarz, K. Seidel, E. Shabalina, P. Sheldon, F. Simon, K. Sinha, P. Skands, P. Skubik, G. Sterman, D. Stolarski, J. Strube, J. Stupak, S. Su, M. Tesar, S. Thomas, E. Thompson, P. Tipton, E. Varnes, N. Vignaroli, J. Virzi, M. Vogel, D. Walker, K. Wang, B. Webber, J. D. Wells, S. Westhoff, D. Whiteson, M. Williams, S. Wu, U. Yang, H. Yokoya, H. Yoo, H. Zhang, N. Zhou, H. Zhu, J. Zupan

This report summarizes the work of the Energy Frontier Top Quark working group of the 2013 Community Summer Study (Snowmass). Read More

We study single-particle inclusive (1PI) distributions in top-quark pair production at hadron colliders, working in the highly boosted regime where the top-quark p_T is much larger than its mass. In particular, we derive a novel factorization formula valid in the small-mass and soft limits of the differential partonic cross section. This provides a framework for the simultaneous resummation of soft gluon corrections and small-mass logarithms, and also an efficient means of obtaining higher-order corrections to the differential cross section in this limit. Read More

We calculate the two-loop corrections to heavy-quark pair production in the gluon fusion channel which arise from diagrams involving a closed light-quark loop. The calculation is carried out by keeping the exact dependence on the heavy-quark mass. The analytic results are written in terms of logarithms, classical polylogarithms Li_n (n=2,3,4), and genuine multiple polylogarithms Li_{2,2}. Read More

We derive closed expressions and useful expansions for the contributions of the tree-level W-boson propagator to the the muon and tau leptonic decay rates. Calling M and m the masses of the initial and final charged leptons, our results in the limit m=0 are valid to all orders in M^2/M_W^2. In the terms of O(m_j^2/M_W^2) (m_j=M,m), our leading corrections, of O(M^2/M_W^2), agree with the canonical value (3/5) M^2/M_W^2, while the coefficient of our subleading contributions, of O(m^2/M_W^2), differs from that reported in the recent literature. Read More

We obtain a soft plus virtual approximation to the NNLO QCD contributions to the top-pair invariant mass distribution at hadron colliders. It is valid up to corrections of order m_t^2/M^2, with M the pair invariant mass. This is currently the most complete QCD calculation for a differential cross section in top-quark pair production, and is useful for describing the high invariant mass region characteristic of boosted top quarks. Read More

If the minimal supersymmetric standard model at scales of around 1 TeV is realized in nature, the total top-squark pair production cross section should be measurable at the CERN Large Hadron Collider. In this work we present precise predictions for this observable, which are based upon approximate NNLO formulas obtained using soft-collinear effective theory methods. Read More

This talk reviews the Standard Model predictions for the top-quark forward backward and charge asymmetries measured at the Tevatron and at the LHC. Read More

Assuming that the recently discovered particle at LHC is the Standard Theory (ST) Higgs Boson, we compare the ST predictions of M_W and Sin^2 theta^lept_eff with the experimental values of these basic observables. While the Sin^2 theta^lept_eff prediction is in excellent agreement with its experimental value, that of M_W shows a 1.33 sigma deviation. Read More

The aim of this article is to review the very important role played by radiative corrections in precision electroweak physics, in the framework of both the Fermi Theory of Weak Interactions and the Standard Theory of Particle Physics. Important theoretical developments, closely connected with the study and applications of the radiative corrections, are also reviewed. The role of radiative corrections in the analysis of some important signals of new physics is also discussed. Read More

At high values of the pair invariant mass the differential cross section for top-quark pair production at hadron colliders factorizes into soft, hard, and fragmentation functions. In this paper we calculate the next-to-next-to-leading-order (NNLO) corrections to the soft function appearing in this factorization formula, thus providing the final piece needed to evaluate at NNLO the differential cross section in the virtual plus soft approximation in the large invariant-mass limit. Technically, this amounts to evaluating the vacuum expectation value of a soft Wilson loop operator built out of light-like Wilson lines for each of the four partons participating in the hard scattering process, with a certain constraint on the total energy of the soft radiation. Read More

We investigate the production of highly energetic top-quark pairs at hadron colliders, focusing on the case where the invariant mass of the pair is much larger than the mass of the top quark. In particular, we set up a factorization formalism appropriate for describing the differential partonic cross section in the double soft and small-mass limit, and explain how to resum simultaneously logarithmic corrections arising from soft gluon emission and from the ratio of the pair-invariant mass to that of the top quark to next-to-next-to-leading logarithmic accuracy. We explore the implications of our results on approximate next-to-next-to-leading order formulas for the differential cross section in the soft limit, pointing out that they offer a simplified calculational procedure for determining the currently unknown delta-function terms in the limit of high invariant mass. Read More

The current theoretical predictions for the observables related to the top-quark pair and the single-top productions at hadron colliders are briefly reviewed. The theoretical predictions are compared to the experimental measurements carried out at the Tevatron and the LHC. Read More

We make use of recent results in effective theory and higher-order perturbative calculations to improve the theoretical predictions of the QCD contribution to the top-quark pair production forward-backward asymmetry at the Tevatron. In particular, we supplement the fixed-order NLO calculation with higher-order corrections from soft gluon resummation at NNLL accuracy performed in two different kinematic schemes, which allows us to make improved predictions for the asymmetry in the $p\bar p$ and $t\bar t$ rest frames as a function of the rapidity and invariant mass of the $t\bar t$ pair. Furthermore, we provide binned results which can be compared with the recent measurements of the forward-backward asymmetry in events with a large pair invariant mass or rapidity difference. Read More

2011May

We make use of recent results in effective theory and higher-order perturbative calculations to improve the theoretical predictions of the top-quark pair production cross section at hadron colliders. In particular, we supplement the fixed-order NLO calculation with higher-order corrections from soft gluon resummation at NNLL accuracy. Uncertainties due to power corrections to the soft limit are estimated by combining results from single-particle inclusive and pair invariant-mass kinematics. Read More

We use techniques from soft-collinear effective theory (SCET) to derive renormalization-group improved predictions for single-particle inclusive (1PI) observables in top-quark pair production at hadron colliders. In particular, we study the top-quark transverse-momentum and rapidity distributions, the forward-backward asymmetry at the Tevatron, and the total cross section at NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed order. We also perform a detailed analysis of power corrections to the leading terms in the threshold expansion of the partonic hard-scattering kernels. Read More

The status of the theoretical predictions for the top-anti top production in hadronic collisions is shortly reviewed, paying a articular attention to the analytic calculation of the two-loop QCD corrections to the parton-level matrix elements. Read More

We evaluate the two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section in the gluon fusion channel. We obtain an analytic expression, which is valid for any value of the Mandelstam invariants s and t and of the heavy-quark mass m. Our findings agree with previous analytic results in the small-mass limit and with recent results for the coefficients of the IR poles. Read More

We calculate the fermionic corrections to the photon-energy spectrum of Bbar -> X_sgamma which arise from the self-interference of the chromomagnetic dipole operator Q_8 at next-to-next-to-leading order by applying naive non-abelianization. The resulting O(beta_0 alpha_s^2) correction to the Bbar -> X_sgamma branching ratio amounts to a relative shift of +0.12% (+0. Read More

Infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension matrix, which is also an essential ingredient for the resummation of large logarithms due to soft gluon emissions. We report a recent analytical calculation of the anomalous dimension matrix with both massless and massive partons at two-loop level, which describes the two-loop infrared singularities of any scattering amplitudes with an arbitrary number of massless and massive partons, and also enables soft gluon resummation at next-to-next-to-leading-logarithmic order. As an application, we calculate the infrared poles in the q qbar -> t tbar and gg -> t tbar scattering amplitudes at two-loop order. Read More

We report on recent calculations of the differential cross section for top-quark pair production at hadron colliders. The results are differential with respect to the top-pair invariant mass and to the partonic scattering angle. In these calculations, which were carried out by employing soft-collinear effective theory techniques, we resummed threshold logarithms up to next-to-next-to-leading logarithmic order. Read More

We calculate the set of O(alpha_s^2) corrections to the branching ratio and to the photon energy spectrum of the decay process B -> X_s gamma originating from the interference of diagrams involving the electromagnetic dipole operator O_7 with diagrams involving the chromomagnetic dipole operator O_8. The corrections evaluated here are one of the elements needed to complete the calculations of the B -> X_s gamma branching ratio at next-to-next-to-leading order in QCD. We conclude that this set of corrections does not change the central value of the Standard Model prediction for Br(B -> X_s gamma) by more than 1 %. Read More

Precision predictions for phenomenologically interesting observables such as the t-tbar invariant mass distribution and forward-backward asymmetry in top-quark pair production at hadron colliders require control over the differential cross section in perturbative QCD. In this paper we improve existing calculations of the doubly differential cross section in the invariant mass and scattering angle by using techniques from soft-collinear effective theory to perform an NNLL resummation of threshold logarithms, which become large when the invariant mass M of the top-quark pair approaches the partonic center-of-mass energy. We also derive an approximate formula for the differential cross section at NNLO in fixed-order perturbation theory, which completely determines the coefficients multiplying the singular plus distributions. Read More

We calculate the leading O(alpha_s^4) contributions to the invariant mass distribution of top-quark pairs produced at the Tevatron and LHC, in the limit where the invariant mass of the t-tbar pair approaches the partonic center-of-mass energy. Our results determine at NNLO in alpha_s the coefficients of all singular plus distributions and scale-dependent logarithms in the differential partonic cross sections for q-qbar, gg -> t-tbar + X. A numerical analysis showing the effects of the NNLO corrections on the central values and scale dependence of the invariant mass distribution is performed. Read More

We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e+e- colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. Read More

The study of the properties of the top quark is one of the main goals of the Large Hadron Collider (LHC) physics program. The experimental precision expected at the LHC requires the calculation of several top-quark related observables beyond leading order in the strong coupling constant. In this work we briefly review the status of the theoretical predictions for the top-quark production processes at hadron colliders. Read More

2009Aug
Affiliations: 1Johannes Gutenberg University Mainz, 2Johannes Gutenberg University Mainz, 3Johannes Gutenberg University Mainz, 4Johannes Gutenberg University Mainz

The infrared divergences of QCD scattering amplitudes can be derived from an anomalous dimension \Gamma, which is a matrix in color space and depends on the momenta and masses of the external partons. It has recently been shown that in cases where there are at least two massive partons involved in the scattering process, starting at two-loop order \Gamma receives contributions involving color and momentum correlations between three (and more) partons. The three-parton correlations can be described by two universal functions F_1 and f_2. Read More

2009Jul
Affiliations: 1Johannes Gutenberg University Mainz, 2Johannes Gutenberg University Mainz, 3Johannes Gutenberg University Mainz, 4Johannes Gutenberg University Mainz

We complete the study of two-loop infrared singularities of scattering amplitudes with an arbitrary number of massive and massless partons in non-abelian gauge theories. To this end, we calculate the universal functions F_1 and f_2, which completely specify the structure of three-parton correlations in the soft anomalous-dimension matrix, at two-loop order in closed analytic form. Both functions are found to be suppressed like O(m^4/s^2) in the limit of small parton masses, in accordance with mass factorization theorems proposed in the literature. Read More

We evaluate the planar two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section, in the quark-antiquark annihilation channel. We obtain the leading color coefficient in an analytic form, in terms of one- and two-dimensional harmonic polylogarithms of maximal weight 4. The result is valid for arbitrary values of the Mandelstam invariants s and t, and of the heavy-quark mass m. Read More

In this short review, the calculation of the next-to-next-to-leading order QCD corrections to the inclusive radiative decay B -> X_s gamma is described. I summarize the salient features of the calculational framework adopted, discuss the results obtained in the last few years, and indicate the technical tools that made the NNLO calculations possible. I conclude by comparing the current NNLO theoretical estimate for the branching ratio with the experimental measurement and by briefly discussing the size and origin of the residual theoretical uncertainty. Read More

We describe the analytic calculation of the fermionic two-loop QCD corrections to the heavy-quark pair production process in the quark-antiquark channel. Read More

We present an analytic expression for the two-loop QCD corrections to the decay process b -> u W^*, where b and u are a massive and massless quark, respectively, while W^* is an off-shell charged weak boson. Since the W-boson can subsequently decay in a lepton anti-neutrino pair, the results of this paper are a first step towards a fully analytic computation of differential distributions for the semileptonic decay of a b-quark. The latter partonic process plays a crucial role in the study of inclusive semileptonic charmless decays of B-mesons. Read More

We briefly review the status of the calculation of next-to-next-to-leading order corrections to large angle Bhabha scattering in pure QED. In particular, we focus on the analytic calculation of the two-loop virtual corrections involving a heavy-flavor fermion loop, which was recently completed. We conclude by assessing the numerical impact of these corrections on the Bhabha scattering cross section at colliders operating at a center of mass energy of 1 GeV and at the future ILC. Read More

We evaluate the fermionic two-loop QCD corrections to the heavy-quark pair production process in the quark-antiquark channel. We obtain analytic results which are valid for any value of the Mandelstam invariants s and t, and of the heavy quark mass m. Our findings confirm previous results for the analytic evaluation in the small-mass limit and numerical results for the exact amplitude. Read More

We review the status of the calculation of next-to-next-to-leading order corrections to large angle Bhabha scattering in pure QED. After discussing the electron-loop and photonic corrections, we focus on the recently calculated two-loop virtual corrections involving a heavy-flavor fermion loop. We conclude by assessing the numerical impact of these corrections on the Bhabha scattering cross section at colliders operating at a center of mass energy of about 1-GeV. Read More

We describe in detail the calculation of the two-loop corrections to the QED Bhabha scattering cross section due to the vacuum polarization by heavy fermions. Our approach eliminates one mass scale from the most challenging part of the calculation and allows us to obtain the corrections in a closed analytical form. The result is valid for arbitrary values of the heavy fermion mass and the Mandelstam invariants, as long as s,t,u >> m_e^2. Read More

We evaluate the two-loop QED corrections to the Bhabha scattering cross section which involve the vacuum polarization by heavy fermions of arbitrary mass m_f >> m_e. The results are valid for generic values of the Mandelstam invariants s,t,u >> m_e^2. Read More

In this paper the building blocks for the two-loop renormalization of the Standard Model are introduced with a comprehensive discussion of the special vertices induced in the Lagrangian by a particular diagonalization of the neutral sector and by two alternative treatments of the Higgs tadpoles. Dyson resummed propagators for the gauge bosons are derived, and two-loop Ward-Slavnov-Taylor identities are discussed. In part II, the complete set of counterterms needed for the two-loop renormalization will be derived. Read More

We consider the extension of the standard model with an arbitrary number of U(1) gauge fields coupled to baryon-minus-lepton number and/or hypercharge. Under the assumption that A^b_FB from the LEP1 experiment is an unlucky fluctuation, we find moderate evidence for the presence of such fields in the precision electroweak data. A relatively large range of the Higgs boson mass is allowed. Read More

Combining our results for various O(alpha_s^2) corrections to the weak radiative B-meson decay, we are able to present the first estimate of the branching ratio at the next-to-next-to-leading order in QCD. We find BR(B -> X_s gamma) = (3.15 +_ 0. Read More