A. Etenko - Double Chooz Collaboration

A. Etenko
Are you A. Etenko?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Etenko
Affiliation
Double Chooz Collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (36)
 
Physics - Instrumentation and Detectors (27)
 
Nuclear Experiment (10)
 
High Energy Physics - Phenomenology (4)
 
Instrumentation and Methods for Astrophysics (3)
 
Solar and Stellar Astrophysics (2)
 
Physics - Atmospheric and Oceanic Physics (1)
 
High Energy Astrophysical Phenomena (1)
 
Nuclear Theory (1)

Publications Authored By A. Etenko

2017Mar
Authors: SHiP collaboration, A. Akmete, A. Alexandrov, A. Anokhina, S. Aoki, E. Atkin, N. Azorskiy, J. J. Back, A. Bagulya, A. Baranov, G. J. Barker, A. Bay, V. Bayliss, G. Bencivenni, A. Y. Berdnikov, Y. A. Berdnikov, M. Bertani, C. Betancourt, I. Bezshyiko, O. Bezshyyko, D. Bick, S. Bieschke, A. Blanco, J. Boehm, M. Bogomilov, K. Bondarenko, W. M. Bonivento, A. Boyarsky, R. Brenner, D. Breton, R. Brundler, M. Bruschi, V. Büscher, A. Buonaura, S. Buontempo, S. Cadeddu, A. Calcaterra, M. Campanelli, J. Chauveau, A. Chepurnov, M. Chernyavsky, K. -Y. Choi, A. Chumakov, P. Ciambrone, G. M. Dallavalle, N. D'Ambrosio, G. D'Appollonio, G. De Lellis, A. De Roeck, M. De Serio, L. Dedenko, A. Di Crescenzo, N. Di Marco, C. Dib, H. Dijkstra, V. Dmitrenko, D. Domenici, S. Donskov, A. Dubreuil, J. Ebert, T. Enik, A. Etenko, F. Fabbri, L. Fabbri, O. Fedin, G. Fedorova, G. Felici, M. Ferro-Luzzi, R. A. Fini, P. Fonte, C. Franco, T. Fukuda, G. Galati, G. Gavrilov, S. Gerlach, L. Golinka-Bezshyyko, D. Golubkov, A. Golutvin, D. Gorbunov, S. Gorbunov, V. Gorkavenko, Y. Gornushkin, M. Gorshenkov, V. Grachev, E. Graverini, V. Grichine, A. M. Guler, Yu. Guz, C. Hagner, H. Hakobyan, E. van Herwijnen, A. Hollnagel, B. Hosseini, M. Hushchyn, G. Iaselli, A. Iuliano, R. Jacobsson, M. Jonker, I. Kadenko, C. Kamiscioglu, M. Kamiscioglu, M. Khabibullin, G. Khaustov, A. Khotyantsev, S. H. Kim, V. Kim, Y. G. Kim, N. Kitagawa, J. -W. Ko, K. Kodama, A. Kolesnikov, D. I. Kolev, V. Kolosov, M. Komatsu, N. Konovalova, M. A. Korkmaz, I. Korol, I. Korol'ko, A. Korzenev, S. Kovalenko, I. Krasilnikova, K. Krivova, Y. Kudenko, V. Kurochka, E. Kuznetsova, H. M. Lacker, A. Lai, G. Lanfranchi, O. Lantwin, A. Lauria, H. Lebbolo, K. Y. Lee, J. -M. Lévy, V. Likacheva, L. Lopes, V. Lyubovitskij, J. Maalmi, A. Magnan, V. Maleev, A. Malinin, A. Mefodev, P. Mermod, S. Mikado, Yu. Mikhaylov, D. A. Milstead, O. Mineev, A. Montanari, M. C. Montesi, K. Morishima, S. Movchan, N. Naganawa, M. Nakamura, T. Nakano, A. Novikov, B. Obinyakov, S. Ogawa, N. Okateva, P. H. Owen, A. Paoloni, B. D. Park, L. Paparella, A. Pastore, M. Patel, D. Pereyma, D. Petrenko, K. Petridis, D. Podgrudkov, V. Poliakov, N. Polukhina, M. Prokudin, A. Prota, A. Rademakers, F. Ratnikov, T. Rawlings, M. Razeti, F. Redi, S. Ricciardi, T. Roganova, A. Rogozhnikov, H. Rokujo, G. Rosa, T. Rovelli, O. Ruchayskiy, T. Ruf, V. Samoylenko, A. Saputi, O. Sato, E. S. Savchenko, W. Schmidt-Parzefall, N. Serra, A. Shakin, M. Shaposhnikov, P. Shatalov, T. Shchedrina, L. Shchutska, V. Shevchenko, H. Shibuya, A. Shustov, S. B. Silverstein, S. Simone, M. Skorokhvatov, S. Smirnov, J. Y. Sohn, A. Sokolenko, N. Starkov, B. Storaci, P. Strolin, S. Takahashi, I. Timiryasov, V. Tioukov, N. Tosi, D. Treille, R. Tsenov, S. Ulin, A. Ustyuzhanin, Z. Uteshev, G. Vankova-Kirilova, F. Vannucci, P. Venkova, S. Vilchinski, M. Villa, K. Vlasik, A. Volkov, R. Voronkov, R. Wanke, J. -K. Woo, M. Wurm, S. Xella, D. Yilmaz, A. U. Yilmazer, C. S. Yoon, Yu. Zaytsev

The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after $2\times 10^{20}$ protons on target. Read More

2016Nov

A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at $\sim$120 and $\sim$300 m.w.e. Read More

A search for neutrino and antineutrino events correlated with 2,350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos ($\bar{\nu}_e$) that inverse beta decay on protons with energies from 1. Read More

The main physical results on the registration of solar neutrinos and the search for rare processes obtained by the Borexino collaboration to date are presented. Read More

2016Apr
Authors: Double Chooz collaboration, Y. Abe, T. Abrahão, H. Almazan, C. Alt, S. Appel, E. Baussan, I. Bekman, M. Bergevin, T. J. C. Bezerra, L. Bezrukov, E. Blucher, T. Brugière, C. Buck, J. Busenitz, A. Cabrera, E. Calvo, L. Camilleri, R. Carr, M. Cerrada, E. Chauveau, P. Chimenti, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadón, K. Crum, A. S. Cucoanes, E. Damon, J. V. Dawson, H. de Kerret, J. Dhooghe, D. Dietrich, Z. Djurcic, J. C. dos Anjos, M. Dracos, A. Etenko, M. Fallot, J. Felde, S. M. Fernandes, V. Fischer, D. Franco, M. Franke, H. Furuta, I. Gil-Botella, L. Giot, M. Göger-Neff, H. Gomez, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, N. Haag, T. Hara, J. Haser, D. Hellwig, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, S. Jiménez, J. Jochum, C. Jollet, F. Kaether, L. N. Kalousis, Y. Kamyshkov, M. Kaneda, D. M. Kaplan, T. Kawasaki, E. Kemp, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. López-Castaño, J. M. LoSecco, B. Lubsandorzhiev, S. Lucht, J. Maeda, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, T. Miletic, R. Milincic, A. Minotti, Y. Nagasaka, D. Navas-Nicolás, P. Novella, H. Nunokawa, L. Oberauer, M. Obolensky, A. Onillon, A. Osborn, C. Palomares, I. M. Pepe, S. Perasso, A. Porta, G. Pronost, J. Reichenbacher, B. Reinhold, M. Röhling, R. Roncin, B. Rybolt, Y. Sakamoto, R. Santorelli, A. C. Schilithz, S. Schönert, S. Schoppmann, M. H. Shaevitz, R. Sharankova, D. Shrestha, V. Sibille, V. Sinev, M. Skorokhvatov, E. Smith, M. Soiron, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, H. H. Trinh Thi, G. Valdiviesso, N. Vassilopoulos, C. Veyssiere, M. Vivier, F. von Feilitzsch, S. Wagner, N. Walsh, H. Watanabe, C. Wiebusch, M. Wurm, G. Yang, F. Yermia, V. Zimmer

During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomena called "Light Noise" has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. Read More

2015Dec
Authors: Double Chooz collaboration, Y. Abe, T. Abrahão, H. Almazan, C. Alt, S. Appel, J. C. Barriere, E. Baussan, I. Bekman, M. Bergevin, T. J. C. Bezerra, L. Bezrukov, E. Blucher, T. Brugière, C. Buck, J. Busenitz, A. Cabrera, L. Camilleri, R. Carr, M. Cerrada, E. Chauveau, P. Chimenti, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadón, K. Crum, A. S. Cucoanes, E. Damon, J. V. Dawson, H. de Kerret, J. Dhooghe, D. Dietrich, Z. Djurcic, J. C. dos Anjos, M. Dracos, A. Etenko, M. Fallot, J. Felde, S. M. Fernandes, V. Fischer, D. Franco, M. Franke, H. Furuta, I. Gil-Botella, L. Giot, M. Göger-Neff, H. Gomez, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, N. Haag, T. Hara, J. Haser, D. Hellwig, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, J. Jochum, C. Jollet, F. Kaether, L. N. Kalousis, Y. Kamyshkov, M. Kaneda, D. M. Kaplan, T. Kawasaki, E. Kemp, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. López-Castaño, J. M. LoSecco, B. Lubsandorzhiev, S. Lucht, J. Maeda, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, T. Miletic, R. Milincic, A. Minotti, Y. Nagasaka, D. Navas-Nicolás, P. Novella, L. Oberauer, M. Obolensky, A. Onillon, A. Osborn, C. Palomares, I. M. Pepe, S. Perasso, A. Porta, G. Pronost, J. Reichenbacher, B. Reinhold, M. Röhling, R. Roncin, B. Rybolt, Y. Sakamoto, R. Santorelli, A. C. Schilithz, S. Schönert, S. Schoppmann, M. H. Shaevitz, R. Sharankova, D. Shrestha, V. Sibille, V. Sinev, M. Skorokhvatov, E. Smith, M. Soiron, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, H. H. Trinh Thi, G. Valdiviesso, N. Vassilopoulos, C. Veyssiere, M. Vivier, F. von Feilitzsch, S. Wagner, N. Walsh, H. Watanabe, C. Wiebusch, M. Wurm, G. Yang, F. Yermia, V. Zimmer

Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2. Read More

2015Oct
Authors: Y. Abe1, S. Appel2, T. Abrahão3, H. Almazan4, C. Alt5, J. C. dos Anjos6, J. C. Barriere7, E. Baussan8, I. Bekman9, M. Bergevin10, T. J. C. Bezerra11, L. Bezrukov12, E. Blucher13, T. Brugière14, C. Buck15, J. Busenitz16, A. Cabrera17, L. Camilleri18, R. Carr19, M. Cerrada20, E. Chauveau21, P. Chimenti22, A. P. Collin23, J. M. Conrad24, J. I. Crespo-Anadón25, K. Crum26, A. S. Cucoanes27, E. Damon28, J. V. Dawson29, J. Dhooghe30, D. Dietrich31, Z. Djurcic32, M. Dracos33, A. Etenko34, M. Fallot35, F. von Feilitzsch36, J. Felde37, S. M. Fernandes38, V. Fischer39, D. Franco40, M. Franke41, H. Furuta42, I. Gil-Botella43, L. Giot44, M. Göger-Neff45, H. Gomez46, L. F. G. Gonzalez47, L. Goodenough48, M. C. Goodman49, N. Haag50, T. Hara51, J. Haser52, D. Hellwig53, M. Hofmann54, G. A. Horton-Smith55, A. Hourlier56, M. Ishitsuka57, J. Jochum58, C. Jollet59, F. Kaether60, L. N. Kalousis61, Y. Kamyshkov62, M. Kaneda63, D. M. Kaplan64, T. Kawasaki65, E. Kemp66, H. de Kerret67, D. Kryn68, M. Kuze69, T. Lachenmaier70, C. E. Lane71, T. Lasserre72, A. Letourneau73, D. Lhuillier74, H. P. Lima Jr75, M. Lindner76, J. M. López-Castaño77, J. M. LoSecco78, B. Lubsandorzhiev79, S. Lucht80, J. Maeda81, C. Mariani82, J. Maricic83, J. Martino84, T. Matsubara85, G. Mention86, A. Meregaglia87, T. Miletic88, R. Milincic89, A. Minotti90, Y. Nagasaka91, D. Navas-Nicolás92, P. Novella93, L. Oberauer94, M. Obolensky95, A. Onillon96, A. Osborn97, C. Palomares98, I. M. Pepe99, S. Perasso100, A. Porta101, G. Pronost102, J. Reichenbacher103, B. Reinhold104, M. Röhling105, R. Roncin106, B. Rybolt107, Y. Sakamoto108, R. Santorelli109, A. C. Schilithz110, S. Schönert111, S. Schoppmann112, M. H. Shaevitz113, R. Sharankova114, D. Shrestha115, V. Sibille116, V. Sinev117, M. Skorokhvatov118, E. Smith119, M. Soiron120, J. Spitz121, A. Stahl122, I. Stancu123, L. F. F. Stokes124, M. Strait125, F. Suekane126, S. Sukhotin127, T. Sumiyoshi128, Y. Sun129, R. Svoboda130, K. Terao131, A. Tonazzo132, H. H. Trinh Thi133, G. Valdiviesso134, N. Vassilopoulos135, C. Veyssiere136, M. Vivier137, S. Wagner138, N. Walsh139, H. Watanabe140, C. Wiebusch141, M. Wurm142, G. Yang143, F. Yermia144, V. Zimmer145
Affiliations: 1Double Chooz Collaboration, 2Double Chooz Collaboration, 3Double Chooz Collaboration, 4Double Chooz Collaboration, 5Double Chooz Collaboration, 6Double Chooz Collaboration, 7Double Chooz Collaboration, 8Double Chooz Collaboration, 9Double Chooz Collaboration, 10Double Chooz Collaboration, 11Double Chooz Collaboration, 12Double Chooz Collaboration, 13Double Chooz Collaboration, 14Double Chooz Collaboration, 15Double Chooz Collaboration, 16Double Chooz Collaboration, 17Double Chooz Collaboration, 18Double Chooz Collaboration, 19Double Chooz Collaboration, 20Double Chooz Collaboration, 21Double Chooz Collaboration, 22Double Chooz Collaboration, 23Double Chooz Collaboration, 24Double Chooz Collaboration, 25Double Chooz Collaboration, 26Double Chooz Collaboration, 27Double Chooz Collaboration, 28Double Chooz Collaboration, 29Double Chooz Collaboration, 30Double Chooz Collaboration, 31Double Chooz Collaboration, 32Double Chooz Collaboration, 33Double Chooz Collaboration, 34Double Chooz Collaboration, 35Double Chooz Collaboration, 36Double Chooz Collaboration, 37Double Chooz Collaboration, 38Double Chooz Collaboration, 39Double Chooz Collaboration, 40Double Chooz Collaboration, 41Double Chooz Collaboration, 42Double Chooz Collaboration, 43Double Chooz Collaboration, 44Double Chooz Collaboration, 45Double Chooz Collaboration, 46Double Chooz Collaboration, 47Double Chooz Collaboration, 48Double Chooz Collaboration, 49Double Chooz Collaboration, 50Double Chooz Collaboration, 51Double Chooz Collaboration, 52Double Chooz Collaboration, 53Double Chooz Collaboration, 54Double Chooz Collaboration, 55Double Chooz Collaboration, 56Double Chooz Collaboration, 57Double Chooz Collaboration, 58Double Chooz Collaboration, 59Double Chooz Collaboration, 60Double Chooz Collaboration, 61Double Chooz Collaboration, 62Double Chooz Collaboration, 63Double Chooz Collaboration, 64Double Chooz Collaboration, 65Double Chooz Collaboration, 66Double Chooz Collaboration, 67Double Chooz Collaboration, 68Double Chooz Collaboration, 69Double Chooz Collaboration, 70Double Chooz Collaboration, 71Double Chooz Collaboration, 72Double Chooz Collaboration, 73Double Chooz Collaboration, 74Double Chooz Collaboration, 75Double Chooz Collaboration, 76Double Chooz Collaboration, 77Double Chooz Collaboration, 78Double Chooz Collaboration, 79Double Chooz Collaboration, 80Double Chooz Collaboration, 81Double Chooz Collaboration, 82Double Chooz Collaboration, 83Double Chooz Collaboration, 84Double Chooz Collaboration, 85Double Chooz Collaboration, 86Double Chooz Collaboration, 87Double Chooz Collaboration, 88Double Chooz Collaboration, 89Double Chooz Collaboration, 90Double Chooz Collaboration, 91Double Chooz Collaboration, 92Double Chooz Collaboration, 93Double Chooz Collaboration, 94Double Chooz Collaboration, 95Double Chooz Collaboration, 96Double Chooz Collaboration, 97Double Chooz Collaboration, 98Double Chooz Collaboration, 99Double Chooz Collaboration, 100Double Chooz Collaboration, 101Double Chooz Collaboration, 102Double Chooz Collaboration, 103Double Chooz Collaboration, 104Double Chooz Collaboration, 105Double Chooz Collaboration, 106Double Chooz Collaboration, 107Double Chooz Collaboration, 108Double Chooz Collaboration, 109Double Chooz Collaboration, 110Double Chooz Collaboration, 111Double Chooz Collaboration, 112Double Chooz Collaboration, 113Double Chooz Collaboration, 114Double Chooz Collaboration, 115Double Chooz Collaboration, 116Double Chooz Collaboration, 117Double Chooz Collaboration, 118Double Chooz Collaboration, 119Double Chooz Collaboration, 120Double Chooz Collaboration, 121Double Chooz Collaboration, 122Double Chooz Collaboration, 123Double Chooz Collaboration, 124Double Chooz Collaboration, 125Double Chooz Collaboration, 126Double Chooz Collaboration, 127Double Chooz Collaboration, 128Double Chooz Collaboration, 129Double Chooz Collaboration, 130Double Chooz Collaboration, 131Double Chooz Collaboration, 132Double Chooz Collaboration, 133Double Chooz Collaboration, 134Double Chooz Collaboration, 135Double Chooz Collaboration, 136Double Chooz Collaboration, 137Double Chooz Collaboration, 138Double Chooz Collaboration, 139Double Chooz Collaboration, 140Double Chooz Collaboration, 141Double Chooz Collaboration, 142Double Chooz Collaboration, 143Double Chooz Collaboration, 144Double Chooz Collaboration, 145Double Chooz Collaboration

The Double Chooz collaboration presents a measurement of the neutrino mixing angle $\theta_{13}$ using reactor $\overline{\nu}_{e}$ observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050m from two reactor cores. Read More

The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. Read More

Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio-purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single mono-energetic photon was obtained. This new bound, tau > 6. Read More

The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Read More

Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 10$^{5}$ years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4\% of the total energy production at 90\% C. Read More

We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5\pm0. Read More

2015Apr
Authors: SHiP Collaboration, M. Anelli, S. Aoki, G. Arduini, J. J. Back, A. Bagulya, W. Baldini, A. Baranov, G. J. Barker, S. Barsuk, M. Battistin, J. Bauche, A. Bay, V. Bayliss, L. Bellagamba, G. Bencivenni, M. Bertani, O. Bezshyyko, D. Bick, N. Bingefors, A. Blondel, M. Bogomilov, A. Boyarsky, D. Bonacorsi, D. Bondarenko, W. Bonivento, J. Borburgh, T. Bradshaw, R. Brenner, D. Breton, N. Brook, M. Bruschi, A. Buonaura, S. Buontempo, S. Cadeddu, A. Calcaterra, M. Calviani, M. Campanelli, C. Capoccia, A. Cecchetti, A. Chatterjee, J. Chauveau, A. Chepurnov, M. Chernyavskiy, P. Ciambrone, C. Cicalo, G. Conti, K. Cornelis, M. Courthold, M. G. Dallavalle, N. D'Ambrosio, G. De Lellis, M. De Serio, L. Dedenko, A. Di Crescenzo, N. Di Marco, C. Dib, J. Dietrich, H. Dijkstra, D. Domenici, S. Donskov, D. Druzhkin, J. Ebert, U. Egede, A. Egorov, V. Egorychev, M. A. El Alaoui, T. Enik, A. Etenko, F. Fabbri, L. Fabbri, G. Fedorova, G. Felici, M. Ferro-Luzzi, R. A. Fini, M. Franke, M. Fraser, G. Galati, B. Giacobbe, B. Goddard, L. Golinka-Bezshyyko, D. Golubkov, A. Golutvin, D. Gorbunov, E. Graverini, J-L Grenard, A. M. Guler, C. Hagner, H. Hakobyan, J. C. Helo, E. van Herwijnen, D. Horvath, M. Iacovacci, G. Iaselli, R. Jacobsson, I. Kadenko, M. Kamiscioglu, C. Kamiscioglu, G. Khaustov, A. Khotjansev, B. Kilminster, V. Kim, N. Kitagawa, K. Kodama, A. Kolesnikov, D. Kolev, M. Komatsu, N. Konovalova, S. Koretskiy, I. Korolko, A. Korzenev, S. Kovalenko, Y. Kudenko, E. Kuznetsova, H. Lacker, A. Lai, G. Lanfranchi, A. Lauria, H. Lebbolo, J. -M. Levy, L. Lista, P. Loverre, A. Lukiashin, V. E. Lyubovitskij, A. Malinin, M. Manfredi, A. Perillo-Marcone, A. Marrone, R. Matev, E. N. Messomo, P. Mermod, S. Mikado, Yu. Mikhaylov, J. Miller, D. Milstead, O. Mineev, R. Mingazheva, G. Mitselmakher, M. Miyanishi, P. Monacelli, A. Montanari, M. C. Montesi, G. Morello, K. Morishima, S. Movtchan, V. Murzin, N. Naganawa, T. Naka, M. Nakamura, T. Nakano, N. Nurakhov, B. Obinyakov, K. Ocalan, S. Ogawa, V. Oreshkin, A. Orlov, J. Osborne, P. Pacholek, J. Panman, A. Paoloni, L. Paparella, A. Pastore, M. Patel, K. Petridis, M. Petrushin, M. Poli-Lener, N. Polukhina, V. Polyakov, M. Prokudin, G. Puddu, F. Pupilli, F. Rademakers, A. Rakai, T. Rawlings, F. Redi, S. Ricciardi, R. Rinaldesi, T. Roganova, A. Rogozhnikov, H. Rokujo, A. Romaniouk, G. Rosa, I. Rostovtseva, T. Rovelli, O. Ruchayskiy, T. Ruf, G. Saitta, V. Samoylenko, V. Samsonov, A. Sanz Ull, A. Saputi, O. Sato, W. Schmidt-Parzefall, N. Serra, S. Sgobba, M. Shaposhnikov, P. Shatalov, A. Shaykhiev, L. Shchutska, V. Shevchenko, H. Shibuya, Y. Shitov, S. Silverstein, S. Simone, M. Skorokhvatov, S. Smirnov, E. Solodko, V. Sosnovtsev, R. Spighi, M. Spinetti, N. Starkov, B. Storaci, C. Strabel, P. Strolin, S. Takahashi, P. Teterin, V. Tioukov, D. Tommasini, D. Treille, R. Tsenov, T. Tshchedrina, A. Ustyuzhanin, F. Vannucci, V. Venturi, M. Villa, Heinz Vincke, Helmut Vincke, M. Vladymyrov, S. Xella, M. Yalvac, N. Yershov, D. Yilmaz, A. U. Yilmazer, G. Vankova-Kirilova, Y. Zaitsev, A. Zoccoli

A new general purpose fixed target facility is proposed at the CERN SPS accelerator which is aimed at exploring the domain of hidden particles and make measurements with tau neutrinos. Hidden particles are predicted by a large number of models beyond the Standard Model. The high intensity of the SPS 400~GeV beam allows probing a wide variety of models containing light long-lived exotic particles with masses below ${\cal O}$(10)~GeV/c$^2$, including very weakly interacting low-energy SUSY states. Read More

Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. Read More

We present the results of the first experimental study of ionization yield of electron recoils with energies below 100 keV produced in liquid xenon by the isotopes: 37Ar, 83mKr, 241Am, 129Xe, 131Xe. It is confirmed by a direct measurement with 37Ar isotope (2.82 keV) that the ionization yield is growing up with the energy decrease in the energy range below ~ 10 keV accordingly to the NEST predictions. Read More

2014Jul
Authors: Y. Abe, J. C. dos Anjos, J. C. Barriere, E. Baussan, I. Bekman, M. Bergevin, T. J. C. Bezerra, L. Bezrukov, E. Blucher, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, M. Cerrada, P. -J. Chang, E. Chauveau, P. Chimenti, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadon, K. Crum, A. S. Cucoanes, E. Damon, J. V. Dawson, J. Dhooghe, D. Dietrich, Z. Djurcic, M. Dracos, M. Elnimr, A. Etenko, M. Fallot, F. von Feilitzsch, J. Felde, S. M. Fernandes, V. Fischer, D. Franco, M. Franke, H. Furuta, I. Gil-Botella, L. Giot, M. Goger-Neff, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, C. Grant, N. Haag, T. Hara, J. Haser, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, J. Jochum, C. Jollet, F. Kaether, L. N. Kalousis, Y. Kamyshkov, D. M. Kaplan, T. Kawasaki, E. Kemp, H. de Kerret, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. Lopez-Castano, J. M. LoSecco, B. Lubsandorzhiev, S. Lucht, J. Maeda, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, T. Miletic, R. Milincic, A. Minotti, Y. Nagasaka, Y. Nikitenko, P. Novella, L. Oberauer, M. Obolensky, A. Onillon, A. Osborn, C. Palomares, I. M. Pepe, S. Perasso, P. Pfahler, A. Porta, G. Pronost, J. Reichenbacher, B. Reinhold, M. Rohling, R. Roncin, S. Roth, B. Rybolt, Y. Sakamoto, R. Santorelli, A. C. Schilithz, S. Schonert, S. Schoppmann, M. H. Shaevitz, R. Sharankova, S. Shimojima, D. Shrestha, V. Sibille, V. Sinev, M. Skorokhvatov, E. Smith, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, A. Stuken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, H. H. Trinh Thi, G. Valdiviesso, N. Vassilopoulos, C. Veyssiere, M. Vivier, S. Wagner, N. Walsh, H. Watanabe, C. Wiebusch, L. Winslow, M. Wurm, G. Yang, F. Yermia, V. Zimmer

The Double Chooz experiment measures the neutrino mixing angle $\theta_{13}$ by detecting reactor $\bar{\nu}_e$ via inverse beta decay. The positron-neutron space and time coincidence allows for a sizable background rejection, nonetheless liquid scintillator detectors would profit from a positron/electron discrimination, if feasible in large detector, to suppress the remaining background. Standard particle identification, based on particle dependent time profile of photon emission in liquid scintillator, can not be used given the identical mass of the two particles. Read More

2014Jun
Authors: Y. Abe1, J. C. dos Anjos2, J. C. Barriere3, E. Baussan4, I. Bekman5, M. Bergevin6, T. J. C. Bezerra7, L. Bezrukov8, E. Blucher9, C. Buck10, J. Busenitz11, A. Cabrera12, E. Caden13, L. Camilleri14, R. Carr15, M. Cerrada16, P. -J. Chang17, E. Chauveau18, P. Chimenti19, A. P. Collin20, E. Conover21, J. M. Conrad22, J. I. Crespo-Anadón23, K. Crum24, A. S. Cucoanes25, E. Damon26, J. V. Dawson27, J. Dhooghe28, D. Dietrich29, Z. Djurcic30, M. Dracos31, M. Elnimr32, A. Etenko33, M. Fallot34, F. von Feilitzsch35, J. Felde36, S. M. Fernandes37, V. Fischer38, D. Franco39, M. Franke40, H. Furuta41, I. Gil-Botella42, L. Giot43, M. Göger-Neff44, L. F. G. Gonzalez45, L. Goodenough46, M. C. Goodman47, C. Grant48, N. Haag49, T. Hara50, J. Haser51, M. Hofmann52, G. A. Horton-Smith53, A. Hourlier54, M. Ishitsuka55, J. Jochum56, C. Jollet57, F. Kaether58, L. N. Kalousis59, Y. Kamyshkov60, D. M. Kaplan61, T. Kawasaki62, E. Kemp63, H. de Kerret64, D. Kryn65, M. Kuze66, T. Lachenmaier67, C. E. Lane68, T. Lasserre69, A. Letourneau70, D. Lhuillier71, H. P. Lima Jr72, M. Lindner73, J. M. López-Castaño74, J. M. LoSecco75, B. Lubsandorzhiev76, S. Lucht77, J. Maeda78, C. Mariani79, J. Maricic80, J. Martino81, T. Matsubara82, G. Mention83, A. Meregaglia84, T. Miletic85, R. Milincic86, A. Minotti87, Y. Nagasaka88, Y. Nikitenko89, P. Novella90, L. Oberauer91, M. Obolensky92, A. Onillon93, A. Osborn94, C. Palomares95, I. M. Pepe96, S. Perasso97, P. Pfahler98, A. Porta99, G. Pronost100, J. Reichenbacher101, B. Reinhold102, M. Röhling103, R. Roncin104, S. Roth105, B. Rybolt106, Y. Sakamoto107, R. Santorelli108, A. C. Schilithz109, S. Schönert110, S. Schoppmann111, M. H. Shaevitz112, R. Sharankova113, S. Shimojima114, D. Shrestha115, V. Sibille116, V. Sinev117, M. Skorokhvatov118, E. Smith119, J. Spitz120, A. Stahl121, I. Stancu122, L. F. F. Stokes123, M. Strait124, A. Stüken125, F. Suekane126, S. Sukhotin127, T. Sumiyoshi128, Y. Sun129, R. Svoboda130, K. Terao131, A. Tonazzo132, H. H. Trinh Thi133, G. Valdiviesso134, N. Vassilopoulos135, C. Veyssiere136, M. Vivier137, S. Wagner138, N. Walsh139, H. Watanabe140, C. Wiebusch141, L. Winslow142, M. Wurm143, G. Yang144, F. Yermia145, V. Zimmer146
Affiliations: 1Double Chooz Collaboration, 2Double Chooz Collaboration, 3Double Chooz Collaboration, 4Double Chooz Collaboration, 5Double Chooz Collaboration, 6Double Chooz Collaboration, 7Double Chooz Collaboration, 8Double Chooz Collaboration, 9Double Chooz Collaboration, 10Double Chooz Collaboration, 11Double Chooz Collaboration, 12Double Chooz Collaboration, 13Double Chooz Collaboration, 14Double Chooz Collaboration, 15Double Chooz Collaboration, 16Double Chooz Collaboration, 17Double Chooz Collaboration, 18Double Chooz Collaboration, 19Double Chooz Collaboration, 20Double Chooz Collaboration, 21Double Chooz Collaboration, 22Double Chooz Collaboration, 23Double Chooz Collaboration, 24Double Chooz Collaboration, 25Double Chooz Collaboration, 26Double Chooz Collaboration, 27Double Chooz Collaboration, 28Double Chooz Collaboration, 29Double Chooz Collaboration, 30Double Chooz Collaboration, 31Double Chooz Collaboration, 32Double Chooz Collaboration, 33Double Chooz Collaboration, 34Double Chooz Collaboration, 35Double Chooz Collaboration, 36Double Chooz Collaboration, 37Double Chooz Collaboration, 38Double Chooz Collaboration, 39Double Chooz Collaboration, 40Double Chooz Collaboration, 41Double Chooz Collaboration, 42Double Chooz Collaboration, 43Double Chooz Collaboration, 44Double Chooz Collaboration, 45Double Chooz Collaboration, 46Double Chooz Collaboration, 47Double Chooz Collaboration, 48Double Chooz Collaboration, 49Double Chooz Collaboration, 50Double Chooz Collaboration, 51Double Chooz Collaboration, 52Double Chooz Collaboration, 53Double Chooz Collaboration, 54Double Chooz Collaboration, 55Double Chooz Collaboration, 56Double Chooz Collaboration, 57Double Chooz Collaboration, 58Double Chooz Collaboration, 59Double Chooz Collaboration, 60Double Chooz Collaboration, 61Double Chooz Collaboration, 62Double Chooz Collaboration, 63Double Chooz Collaboration, 64Double Chooz Collaboration, 65Double Chooz Collaboration, 66Double Chooz Collaboration, 67Double Chooz Collaboration, 68Double Chooz Collaboration, 69Double Chooz Collaboration, 70Double Chooz Collaboration, 71Double Chooz Collaboration, 72Double Chooz Collaboration, 73Double Chooz Collaboration, 74Double Chooz Collaboration, 75Double Chooz Collaboration, 76Double Chooz Collaboration, 77Double Chooz Collaboration, 78Double Chooz Collaboration, 79Double Chooz Collaboration, 80Double Chooz Collaboration, 81Double Chooz Collaboration, 82Double Chooz Collaboration, 83Double Chooz Collaboration, 84Double Chooz Collaboration, 85Double Chooz Collaboration, 86Double Chooz Collaboration, 87Double Chooz Collaboration, 88Double Chooz Collaboration, 89Double Chooz Collaboration, 90Double Chooz Collaboration, 91Double Chooz Collaboration, 92Double Chooz Collaboration, 93Double Chooz Collaboration, 94Double Chooz Collaboration, 95Double Chooz Collaboration, 96Double Chooz Collaboration, 97Double Chooz Collaboration, 98Double Chooz Collaboration, 99Double Chooz Collaboration, 100Double Chooz Collaboration, 101Double Chooz Collaboration, 102Double Chooz Collaboration, 103Double Chooz Collaboration, 104Double Chooz Collaboration, 105Double Chooz Collaboration, 106Double Chooz Collaboration, 107Double Chooz Collaboration, 108Double Chooz Collaboration, 109Double Chooz Collaboration, 110Double Chooz Collaboration, 111Double Chooz Collaboration, 112Double Chooz Collaboration, 113Double Chooz Collaboration, 114Double Chooz Collaboration, 115Double Chooz Collaboration, 116Double Chooz Collaboration, 117Double Chooz Collaboration, 118Double Chooz Collaboration, 119Double Chooz Collaboration, 120Double Chooz Collaboration, 121Double Chooz Collaboration, 122Double Chooz Collaboration, 123Double Chooz Collaboration, 124Double Chooz Collaboration, 125Double Chooz Collaboration, 126Double Chooz Collaboration, 127Double Chooz Collaboration, 128Double Chooz Collaboration, 129Double Chooz Collaboration, 130Double Chooz Collaboration, 131Double Chooz Collaboration, 132Double Chooz Collaboration, 133Double Chooz Collaboration, 134Double Chooz Collaboration, 135Double Chooz Collaboration, 136Double Chooz Collaboration, 137Double Chooz Collaboration, 138Double Chooz Collaboration, 139Double Chooz Collaboration, 140Double Chooz Collaboration, 141Double Chooz Collaboration, 142Double Chooz Collaboration, 143Double Chooz Collaboration, 144Double Chooz Collaboration, 145Double Chooz Collaboration, 146Double Chooz Collaboration

The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. Read More

The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. Read More

2014May
Authors: Double Chooz collaboration, Y. Abe, J. C. dos Anjos, J. C. Barriere, E. Baussan, I. Bekman, M. Bergevin, T. J. C. Bezerra, L. Bezrukov, E. Blucher, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, M. Cerrada, P. -J. Chang, E. Chauveau, P. Chimenti, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadón, K. Crum, A. Cucoanes, E. Damon, J. V. Dawson, D. Dietrich, Z. Djurcic, M. Dracos, M. Elnimr, A. Etenko, M. Fallot, F. von Feilitzsch, J. Felde, S. M. Fernandes, V. Fischer, D. Franco, M. Franke, H. Furuta, I. Gil-Botella, L. Giot, M. Göger-Neff, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, C. Grant, N. Haag, T. Hara, J. Haser, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, J. Jochum, C. Jollet, F. Kaether, L. N. Kalousis, Y. Kamyshkov, D. M. Kaplan, T. Kawasaki, E. Kemp, H. de Kerret, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. López-Casta no, J. M. LoSecco, B. Lubsandorzhiev, S. Lucht, J. Maeda, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, T. Miletic, R. Milincic, A. Minotti, Y. Nagasaka, Y. Nikitenko, P. Novella, M. Obolensky, L. Oberauer, A. Onillon, A. Osborn, C. Palomares, I. M. Pepe, S. Perasso, P. Pfahler, A. Porta, G. Pronost, J. Reichenbacher, B. Reinhold, M. Röhling, R. Roncin, S. Roth, B. Rybolt, Y. Sakamoto, R. Santorelli, A. C. Schilithz, S. Schönert, S. Schoppmann, M. H. Shaevitz, R. Sharankova, S. Shimojima, V. Sibille, V. Sinev, M. Skorokhvatov, E. Smith, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, A. Stüken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, H. H. Trinh Thi, G. Valdiviesso, N. Vassilopoulos, C. Veyssiere, M. Vivier, S. Wagner, H. Watanabe, C. Wiebusch, L. Winslow, M. Wurm, G. Yang, F. Yermia, V. Zimmer

We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. Read More

2014Jan
Authors: Y. Abe, J. C. dos Anjos, J. C. Barriere, E. Baussan, I. Bekman, M. Bergevin, T. J. C. Bezerra, L. Bezrukov, E. Blucher, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, M. Cerrada, P. -J. Chang, E. Chauveau, P. Chimenti, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadón, K. Crum, A. Cucoanes, E. Damon, J. V. Dawson, D. Dietrich, Z. Djurcic, M. Dracos, M. Elnimr, A. Etenko, M. Fallot, F. von Feilitzsch, J. Felde, S. M. Fernandes, V. Fischer, D. Franco, M. Franke, H. Furuta, I. Gil-Botella, L. Giot, M. Göger-Neff, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, C. Grant, N. Haag, T. Hara, J. Haser, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, J. Jochum, C. Jollet, F. Kaether, L. N. Kalousis, Y. Kamyshkov, D. M. Kaplan, T. Kawasaki, E. Kemp, H. de Kerret, T. Konno, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. López-Castaño, J. M. LoSecco, B. K. Lubsandorzhiev, S. Lucht, J. Maeda, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, T. Miletic, R. Milincic, A. Minotti, Y. Nagasaka, K. Nakajima, Y. Nikitenko, P. Novella, M. Obolensky, L. Oberauer, A. Onillon, A. Osborn, C. Palomares, I. M. Pepe, S. Perasso, P. Pfahler, A. Porta, G. Pronost, J. Reichenbacher, B. Reinhold, M. Röhling, R. Roncin, S. Roth, B. Rybolt, Y. Sakamoto, R. Santorelli, F. Sato, A. C. Schilithz, S. Schönert, S. Schoppmann, M. H. Shaevitz, R. Sharankova, S. Shimojima, V. Sibille, V. Sinev, M. Skorokhvatov, E. Smith, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, A. Stüken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, H. H. Trinh Thi, G. Valdiviesso, N. Vassilopoulos, C. Veyssiere, M. Vivier, S. Wagner, H. Watanabe, C. Wiebusch, L. Winslow, M. Wurm, G. Yang, F. Yermia, V. Zimmer

The oscillation results published by the Double Chooz collaboration in 2011 and 2012 rely on background models substantiated by reactor-on data. In this analysis, we present a background-model-independent measurement of the mixing angle $\theta_{13}$ by including 7.53 days of reactor-off data. Read More

If heavy neutrinos with mass $m_{\nu_{H}}\geq$2$ m_e $ are produced in the Sun via the decay ${^8\rm{B}} \rightarrow {^8\rm{Be}} + e^+ + \nu_H$ in a side branch of pp-chain, they would undergo the observable decay into an electron, a positron and a light neutrino $\nu_{H}\rightarrow\nu_{L}+e^++e^-$. In the present work Borexino data are used to set a bound on the existence of such decays. We constrain the mixing of a heavy neutrino with mass 1. Read More

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS). Read More

Borexino has been running since May 2007 at the LNGS with the primary goal of detecting solar neutrinos. The detector, a large, unsegmented liquid scintillator calorimeter characterized by unprecedented low levels of intrinsic radioactivity, is optimized for the study of the lower energy part of the spectrum. During the Phase-I (2007-2010) Borexino first detected and then precisely measured the flux of the 7Be solar neutrinos, ruled out any significant day-night asymmetry of their interaction rate, made the first direct observation of the pep neutrinos, and set the tightest upper limit on the flux of CNO neutrinos. Read More

The solar neutrino experiment Borexino, which is located in the Gran Sasso underground laboratories, is in a unique position to study muon-induced backgrounds in an organic liquid scintillator. In this study, a large sample of cosmic muons is identified and tracked by a muon veto detector external to the liquid scintillator, and by the specific light patterns observed when muons cross the scintillator volume. The yield of muon-induced neutrons is found to be Yn =(3. Read More

We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $\pm$ 0. Read More

2013Jan
Authors: Double Chooz Collaboration, Y. Abe, C. Aberle, J. C. dos Anjos, J. C. Barriere, M. Bergevin, A. Bernstein, T. J. C. Bezerra, L. Bezrukhov, E. Blucher, N. S. Bowden, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, M. Cerrada, P. -J. Chang, P. Chimenti, T. Classen, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadón, K. Crum, A. Cucoanes, E. Damon, J. V. Dawson, S. Dazeley, D. Dietrich, Z. Djurcic, M. Dracos, V. Durand, J. Ebert, Y. Efremenko, M. Elnimr, A. Erickson, A. Etenko, M. Fallot, M. Fechner, F. von Feilitzsch, J. Felde, S. M. Fernandes, V. Fischer, D. Franco, A. J. Franke, M. Franke, H. Furuta, R. Gama, I. Gil-Botella, L. Giot, M. Göger-Neff, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, J. TM. Goon, D. Greiner, N. Haag, S. Habib, C. Hagner, T. Hara, F. X. Hartmann, J. Haser, A. Hatzikoutelis, T. Hayakawa, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, J. Jochum, C. Jollet, C. L. Jones, F. Kaether, L. N. Kalousis, Y. Kamyshkov, D. M. Kaplan, T. Kawasaki, G. Keefer, E. Kemp, H. de Kerret, T. Konno, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, C. Langbrandtner, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. López-Castaño, J. M. LoSecco, B. K. Lubsandorzhiev, S. Lucht, D. McKee, J. Maeda, C. N. Maesano, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, M. Meyer, T. Miletic, R. Milincic, H. Miyata, Th. A. Mueller, Y. Nagasaka, K. Nakajima, P. Novella, M. Obolensky, L. Oberauer, A. Onillon, A. Osborn, I. Ostrovskiy, C. Palomares, I. M. Pepe, S. Perasso, P. Perrin, P. Pfahler, A. Porta, W. Potzel, G. Pronost, J. Reichenbacher, B. Reinhold, A. Remoto, M. Röhling, R. Roncin, S. Roth, B. Rybolt, Y. Sakamoto, R. Santorelli, F. Sato, S. Schönert, S. Schoppmann, T. Schwetz, M. H. Shaevitz, S. Shimojima, D. Shrestha, J-L. Sida, V. Sinev, M. Skorokhvatov, E. Smith, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, A. Stüken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, M. Toups, H. H. Trinh Thi, G. Valdiviesso, C. Veyssiere, S. Wagner, H. Watanabe, B. White, C. Wiebusch, L. Winslow, M. Worcester, M. Wurm, F. Yermia, V. Zimmer

The Double Chooz experiment has determined the value of the neutrino oscillation parameter $\theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. Read More

2012Dec
Affiliations: 1National Nuclear Research University, MEPhI, Russia, 2National Nuclear Research University, MEPhI, Russia, 3National Research Centre Kurchatov Institute, Russia, 4National Nuclear Research University, MEPhI, Russia, 5National Nuclear Research University, MEPhI, Russia, 6National Nuclear Research University, MEPhI, Russia, 7National Nuclear Research University, MEPhI, Russia, 8National Nuclear Research University, MEPhI, Russia, 9Petersburg Nuclear Physics Institute, Russia, 10National Nuclear Research University, MEPhI, Russia, 11SSC RF Institute for Theoretical and Experimental Physics, Russia, 12National Nuclear Research University, MEPhI, Russia, 13National Nuclear Research University, MEPhI, Russia, 14National Nuclear Research University, MEPhI, Russia, 15National Nuclear Research University, MEPhI, Russia, 16National Nuclear Research University, MEPhI, Russia, 17National Nuclear Research University, MEPhI, Russia, 18National Nuclear Research University, MEPhI, Russia, 19National Nuclear Research University, MEPhI, Russia, 20National Nuclear Research University, MEPhI, Russia, 21National Nuclear Research University, MEPhI, Russia, 22National Nuclear Research University, MEPhI, Russia, 23National Nuclear Research University, MEPhI, Russia, 24National Nuclear Research University, MEPhI, Russia, 25National Nuclear Research University, MEPhI, Russia, 26National Nuclear Research University, MEPhI, Russia, 27National Research Centre Kurchatov Institute, Russia, 28National Nuclear Research University, MEPhI, Russia, 29National Nuclear Research University, MEPhI, Russia, 30National Nuclear Research University, MEPhI, Russia, 31National Research Centre Kurchatov Institute, Russia, 32National Nuclear Research University, MEPhI, Russia, 33National Research Centre Kurchatov Institute, Russia, 34National Research Centre Kurchatov Institute, Russia, 35National Nuclear Research University, MEPhI, Russia, 36National Nuclear Research University, MEPhI, Russia, 37National Nuclear Research University, MEPhI, Russia, 38National Nuclear Research University, MEPhI, Russia, 39National Nuclear Research University, MEPhI, Russia, 40National Nuclear Research University, MEPhI, Russia, 41National Nuclear Research University, MEPhI, Russia, 42National Research Centre Kurchatov Institute, Russia, 43National Research Centre Kurchatov Institute, Russia, 44National Nuclear Research University, MEPhI, Russia, 45SSC RF Institute for Theoretical and Experimental Physics, Russia

We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental sites: Kalinin Nuclear Power Plant in the Russian Federation and Spallation Neutron Source at the Oak Ridge National Laboratory in the USA. Both sites have advantages as well as limitations. Read More

We have studied the alpha decays of 214Po into 210Pb and of 212Po into 208Pb tagged by the coincidence with the preceding beta decays from 214Bi and 212Bi, respectively. The employed 222Rn, 232Th, and 220Rn sources were sealed inside quartz vials and inserted in the Counting Test Facility at the underground Gran Sasso National Laboratory in Italy. We find that the mean lifetime of 214Po is (236. Read More

2012Oct
Authors: Y. Abe, C. Aberle, J. C. dos Anjos, J. C. Barriere, M. Bergevin, A. Bernstein, T. J. C. Bezerra, L. Bezrukhov, E. Blucher, N. S. Bowden, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, M. Cerrada, P. -J. Chang, P. Chimenti, T. Classen, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadon, K. Crum, A. Cucoanes, M. V. D'Agostino, E. Damon, J. V. Dawson, S. Dazeley, D. Dietrich, Z. Djurcic, M. Dracos, V. Durand, J. Ebert, Y. Efremenko, M. Elnimr, A. Erickson, A. Etenko, M. Fallot, M. Fechner, F. von Feilitzsch, J. Felde, S. M. Fernandes, V. Fischer, D. Franco, A. J. Franke, M. Franke, H. Furuta, R. Gama, I. Gil-Botella, L. Giot, M. Göger-Neff, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, J. TM. Goon, D. Greiner, N. Haag, S. Habib, C. Hagner, T. Hara, F. X. Hartmann, J. Haser, A. Hatzikoutelis, T. Hayakawa, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, J. Jochum, C. Jollet, C. L. Jones, F. Kaether, L. N. Kalousis, Y. Kamyshkov, D. M. Kaplan, T. Kawasaki, G. Keefer, E. Kemp, H. de Kerret, Y. Kibe, T. Konno, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, C. Langbrandtner, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. Lopez-Castano, J. M. LoSecco, B. K. Lubsandorzhiev, S. Lucht, D. McKee, J. Maeda, C. N. Maesano, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, M. Meyer, T. Miletic, R. Milincic, H. Miyata, Th. A. Mueller, Y. Nagasaka, K. Nakajima, P. Novella, M. Obolensky, L. Oberauer, A. Onillon, A. Osborn, I. Ostrovskiy, C. Palomares, I. M. Pepe, S. Perasso, P. Perrin, P. Pfahler, A. Porta, W. Potzel, G. Pronost, J. Reichenbacher, B. Reinhold, A. Remoto, M. Röhling, R. Roncin, S. Roth, B. Rybolt, Y. Sakamoto, R. Santorelli, F. Sato, S. Schönert, S. Schoppmann, T. Schwetz, M. H. Shaevitz, S. Shimojima, D. Shrestha, J-L. Sida, V. Sinev, M. Skorokhvatov, E. Smith, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, A. Stüken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, M. Toups, H. H. Trinh Thi, G. Valdiviesso, C. Veyssiere, S. Wagner, H. Watanabe, B. White, C. Wiebusch, L. Winslow, M. Worcester, M. Wurm, F. Yermia, V. Zimmer

Double Chooz is unique among modern reactor-based neutrino experiments studying $\bar \nu_e$ disappearance in that data can be collected with all reactors off. In this paper, we present data from 7.53 days of reactor-off running. Read More

2012Jul
Authors: Y. Abe, C. Aberle, J. C. dos Anjos, J. C. Barriere, M. Bergevin, A. Bernstein, T. J. C. Bezerra, L. Bezrukhov, E. Blucher, N. S. Bowden, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, M. Cerrada, P. -J. Chang, P. Chimenti, T. Classen, A. P. Collin, E. Conover, J. M. Conrad, J. I. Crespo-Anadón, K. Crum, A. Cucoanes, M. V. D'Agostino, E. Damon, J. V. Dawson, S. Dazeley, D. Dietrich, Z. Djurcic, M. Dracos, V. Durand, J. Ebert, Y. Efremenko, M. Elnimr, A. Etenko, M. Fallot, M. Fechner, F. von Feilitzsch, J. Felde, D. Franco, A. J. Franke, M. Franke, H. Furuta, R. Gama, I. Gil-Botella, L. Giot, M. Goger-Neff, L. F. G. Gonzalez, M. C. Goodman, J. TM. Goon, D. Greiner, N. Haag, C. Hagner, T. Hara, F. X. Hartmann, J. Haser, A. Hatzikoutelis, T. Hayakawa, M. Hofmann, G. A. Horton-Smith, A. Hourlier, M. Ishitsuka, J. Jochum, C. Jollet, C. L. Jones, F. Kaether, L. N. Kalousis, Y. Kamyshkov, D. M. Kaplan, T. Kawasaki, G. Keefer, E. Kemp, H. de Kerret, Y. Kibe, T. Konno, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, C. Langbrandtner, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, J. M. López-Castanõ, J. M. LoSecco, B. K. Lubsandorzhiev, S. Lucht, D. McKee, J. Maeda, C. N. Maesano, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, T. Miletic, R. Milincic, H. Miyata, Th. A. Mueller, Y. Nagasaka, K. Nakajima, P. Novella, M. Obolensky, L. Oberauer, A. Onillon, A. Osborn, I. Ostrovskiy, C. Palomares, I. M. Pepe, S. Perasso, P. Perrin, P. Pfahler, A. Porta, W. Potzel, J. Reichenbacher, B. Reinhold, A. Remoto, M. Rohling, R. Roncin, S. Roth, Y. Sakamoto, R. Santorelli, F. Sato, S. Schonert, S. Schoppmann, T. Schwetz, M. H. Shaevitz, S. Shimojima, D. Shrestha, J. -L. Sida, V. Sinev, M. Skorokhvatov, E. Smith, J. Spitz, A. Stahl, I. Stancu, L. F. F. Stokes, M. Strait, A. Stuken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, R. Svoboda, K. Terao, A. Tonazzo, M. Toups, H. H. Trinh Thi, G. Valdiviesso, C. Veyssiere, S. Wagner, H. Watanabe, B. White, C. Wiebusch, L. Winslow, M. Worcester, M. Wurm, F. Yermia, V. Zimmer

The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10. Read More

Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. This paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. Read More

Borexino is a large-volume liquid scintillator detector installed in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. After several years of construction, data taking started in May 2007. The Borexino phase I ended after about three years of data taking. Read More

2012Apr
Authors: T. Alexander1, D. Alton2, K. Arisaka3, H. O. Back4, P. Beltrame5, J. Benziger6, G. Bonfini7, A. Brigatti8, J. Brodsky9, L. Cadonati10, F. Calaprice11, A. Candela12, H. Cao13, P. Cavalcante14, A. Chavarria15, A. Chepurnov16, D. Cline17, A. G. Cocco18, C. Condon19, D. D'Angelo20, S. Davini21, E. De Haas22, A. Derbin23, G. Di Pietro24, I. Dratchnev25, D. Durben26, A. Empl27, A. Etenko28, A. Fan29, G. Fiorillo30, K. Fomenko31, F. Gabriele32, C. Galbiati33, S. Gazzana34, C. Ghag35, C. Ghiano36, A. Goretti37, L. Grandi38, M. Gromov39, M. Guan40, C. Guo41, G. Guray42, E. V. Hungerford43, Al. Ianni44, An. Ianni45, A. Kayunov46, K. Keeter47, C. Kendziora48, S. Kidner49, V. Kobychev50, G. Koh51, D. Korablev52, G. Korga53, E. Shields54, P. Li55, B. Loer56, P. Lombardi57, C. Love58, L. Ludhova59, L. Lukyanchenko60, A. Lund61, K. Lung62, Y. Ma63, I. Machulin64, J. Maricic65, C. J. Martoff66, Y. Meng67, E. Meroni68, P. D. Meyers69, T. Mohayai70, D. Montanari71, M. Montuschi72, P. Mosteiro73, B. Mount74, V. Muratova75, A. Nelson76, A. Nemtzow77, N. Nurakhov78, M. Orsini79, F. Ortica80, M. Pallavicini81, E. Pantic82, S. Parmeggiano83, R. Parsells84, N. Pelliccia85, L. Perasso86, F. Perfetto87, L. Pinsky88, A. Pocar89, S. Pordes90, G. Ranucci91, A. Razeto92, A. Romani93, N. Rossi94, P. Saggese95, R. Saldanha96, C. Salvo97, W. Sands98, M. Seigar99, D. Semenov100, M. Skorokhvatov101, O. Smirnov102, A. Sotnikov103, S. Sukhotin104, Y. Suvorov105, R. Tartaglia106, J. Tatarowicz107, G. Testera108, A. Teymourian109, J. Thompson110, E. Unzhakov111, R. B. Vogelaar112, H. Wang113, S. Westerdale114, M. Wojcik115, A. Wright116, J. Xu117, C. Yang118, S. Zavatarelli119, M. Zehfus120, W. Zhong121, G. Zuzel122
Affiliations: 1DarkSide Collaboration, 2DarkSide Collaboration, 3DarkSide Collaboration, 4DarkSide Collaboration, 5DarkSide Collaboration, 6DarkSide Collaboration, 7DarkSide Collaboration, 8DarkSide Collaboration, 9DarkSide Collaboration, 10DarkSide Collaboration, 11DarkSide Collaboration, 12DarkSide Collaboration, 13DarkSide Collaboration, 14DarkSide Collaboration, 15DarkSide Collaboration, 16DarkSide Collaboration, 17DarkSide Collaboration, 18DarkSide Collaboration, 19DarkSide Collaboration, 20DarkSide Collaboration, 21DarkSide Collaboration, 22DarkSide Collaboration, 23DarkSide Collaboration, 24DarkSide Collaboration, 25DarkSide Collaboration, 26DarkSide Collaboration, 27DarkSide Collaboration, 28DarkSide Collaboration, 29DarkSide Collaboration, 30DarkSide Collaboration, 31DarkSide Collaboration, 32DarkSide Collaboration, 33DarkSide Collaboration, 34DarkSide Collaboration, 35DarkSide Collaboration, 36DarkSide Collaboration, 37DarkSide Collaboration, 38DarkSide Collaboration, 39DarkSide Collaboration, 40DarkSide Collaboration, 41DarkSide Collaboration, 42DarkSide Collaboration, 43DarkSide Collaboration, 44DarkSide Collaboration, 45DarkSide Collaboration, 46DarkSide Collaboration, 47DarkSide Collaboration, 48DarkSide Collaboration, 49DarkSide Collaboration, 50DarkSide Collaboration, 51DarkSide Collaboration, 52DarkSide Collaboration, 53DarkSide Collaboration, 54DarkSide Collaboration, 55DarkSide Collaboration, 56DarkSide Collaboration, 57DarkSide Collaboration, 58DarkSide Collaboration, 59DarkSide Collaboration, 60DarkSide Collaboration, 61DarkSide Collaboration, 62DarkSide Collaboration, 63DarkSide Collaboration, 64DarkSide Collaboration, 65DarkSide Collaboration, 66DarkSide Collaboration, 67DarkSide Collaboration, 68DarkSide Collaboration, 69DarkSide Collaboration, 70DarkSide Collaboration, 71DarkSide Collaboration, 72DarkSide Collaboration, 73DarkSide Collaboration, 74DarkSide Collaboration, 75DarkSide Collaboration, 76DarkSide Collaboration, 77DarkSide Collaboration, 78DarkSide Collaboration, 79DarkSide Collaboration, 80DarkSide Collaboration, 81DarkSide Collaboration, 82DarkSide Collaboration, 83DarkSide Collaboration, 84DarkSide Collaboration, 85DarkSide Collaboration, 86DarkSide Collaboration, 87DarkSide Collaboration, 88DarkSide Collaboration, 89DarkSide Collaboration, 90DarkSide Collaboration, 91DarkSide Collaboration, 92DarkSide Collaboration, 93DarkSide Collaboration, 94DarkSide Collaboration, 95DarkSide Collaboration, 96DarkSide Collaboration, 97DarkSide Collaboration, 98DarkSide Collaboration, 99DarkSide Collaboration, 100DarkSide Collaboration, 101DarkSide Collaboration, 102DarkSide Collaboration, 103DarkSide Collaboration, 104DarkSide Collaboration, 105DarkSide Collaboration, 106DarkSide Collaboration, 107DarkSide Collaboration, 108DarkSide Collaboration, 109DarkSide Collaboration, 110DarkSide Collaboration, 111DarkSide Collaboration, 112DarkSide Collaboration, 113DarkSide Collaboration, 114DarkSide Collaboration, 115DarkSide Collaboration, 116DarkSide Collaboration, 117DarkSide Collaboration, 118DarkSide Collaboration, 119DarkSide Collaboration, 120DarkSide Collaboration, 121DarkSide Collaboration, 122DarkSide Collaboration

As part of the DarkSide program of direct dark matter searches using liquid argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. Read More

We have measured the muon flux at the underground Gran Sasso National Laboratory (3800 m w.e.) to be (3. Read More

2011Dec
Authors: Y. Abe, C. Aberle, T. Akiri, J. C. dos Anjos, F. Ardellier, A. F. Barbosa, A. Baxter, M. Bergevin, A. Bernstein, T. J. C. Bezerra, L. Bezrukhov, E. Blucher, M. Bongrand, N. S. Bowden, C. Buck, J. Busenitz, A. Cabrera, E. Caden, L. Camilleri, R. Carr, M. Cerrada, P. -J. Chang, P. Chimenti, T. Classen, A. P. Collin, E. Conover, J. M. Conrad, S. Cormon, J. I. Crespo-Anadón, M. Cribier, K. Crum, A. Cucoanes, M. V. D'Agostino, E. Damon, J. V. Dawson, S. Dazeley, M. Dierckxsens, D. Dietrich, Z. Djurcic, M. Dracos, V. Durand, Y. Efremenko, M. Elnimr, Y. Endo, A. Etenko, E. Falk, M. Fallot, M. Fechner, F. von Feilitzsch, J. Felde, S. M. Fernandes, D. Franco, A. J. Franke, M. Franke, H. Furuta, R. Gama, I. Gil-Botella, L. Giot, M. Göger-Neff, L. F. G. Gonzalez, M. C. Goodman, J. TM. Goon, D. Greiner, B. Guillon, N. Haag, C. Hagner, T. Hara, F. X. Hartmann, J. Hartnell, T. Haruna, J. Haser, A. Hatzikoutelis, T. Hayakawa, M. Hofmann, G. A. Horton-Smith, M. Ishitsuka, J. Jochum, C. Jollet, C. L. Jones, F. Kaether, L. Kalousis, Y. Kamyshkov, D. M. Kaplan, T. Kawasaki, G. Keefer, E. Kemp, H. de Kerret, Y. Kibe, T. Konno, D. Kryn, M. Kuze, T. Lachenmaier, C. E. Lane, C. Langbrandtner, T. Lasserre, A. Letourneau, D. Lhuillier, H. P. Lima Jr, M. Lindner, Y. Liu, J. M. López-Castanõ, J. M. LoSecco, B. K. Lubsandorzhiev, S. Lucht, D. McKee, J. Maeda, C. N. Maesano, C. Mariani, J. Maricic, J. Martino, T. Matsubara, G. Mention, A. Meregaglia, T. Miletic, R. Milincic, A. Milzstajn, H. Miyata, D. Motta, Th. A. Mueller, Y. Nagasaka, K. Nakajima, P. Novella, M. Obolensky, L. Oberauer, A. Onillon, A. Osborn, I. Ostrovskiy, C. Palomares, S. J. M. Peeters, I. M. Pepe, S. Perasso, P. Perrin, P. Pfahler, A. Porta, W. Potzel, R. Queval, J. Reichenbacher, B. Reinhold, A. Remoto, D. Reyna, M. Röhling, S. Roth, H. A. Rubin, Y. Sakamoto, R. Santorelli, F. Sato, S. Schönert, S. Schoppmann, U. Schwan, T. Schwetz, M. H. Shaevitz, D. Shrestha, J-L. Sida, V. Sinev, M. Skorokhvatov, E. Smith, J. Spitz, A. Stahl, I. Stancu, M. Strait, A. Stüken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, Z. Sun, R. Svoboda, H. Tabata, N. Tamura, K. Terao, A. Tonazzo, M. Toups, H. H. Trinh Thi, C. Veyssiere, S. Wagner, H. Watanabe, B. White, C. Wiebusch, L. Winslow, M. Worcester, M. Wurm, E. Yanovitch, F. Yermia, K. Zbiri, V. Zimmer

The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 $\pm$ 0. Read More

Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Read More

This final article about the CHOOZ experiment presents a complete description of the electron antineutrino source and detector, the calibration methods and stability checks, the event reconstruction procedures and the Monte Carlo simulation. The data analysis, systematic effects and the methods used to reach our conclusions are fully discussed. Some new remarks are presented on the deduction of the confidence limits and on the correct treatment of systematic errors. Read More

We present new results based on the entire CHOOZ data sample. We find (at 90% confidence level) no evidence for neutrino oscillations in the anti_nue disappearance mode, for the parameter region given by approximately Delta m**2 > 7 x 10**-4 eV^2 for maximum mixing, and sin**2(2 theta) = 0.10 for large Delta m**2. Read More

The CHOOZ experiment measured the antineutrino flux at a distance of about 1 Km from two nuclear reactors in order to detect possible neutrino oscillations with squared mass differences as low as 10**-3 eV**2 for full mixing. We show that the data analysis of the electron antineutrino events, collected by our liquid scintillation detector, locates the antineutrino source within a cone of half-aperture of about 18 degrees at the 68% C.L. Read More