# A. Denner - Wurzburg University

## Contact Details

NameA. Denner |
||

AffiliationWurzburg University |
||

CityWürzburg |
||

CountryGermany |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (49) High Energy Physics - Experiment (17) High Energy Physics - Theory (1) Mathematics - Dynamical Systems (1) |

## Publications Authored By A. Denner

This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa+Recola framework allows for the computation of -in principle- any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. Read More

We present NLO electroweak corrections to Higgs production in association with off-shell top-antitop quark pairs. The full process $\text{p}\text{p}\to\text{e}^+\nu_{\text{e}} \mu^-\bar{\nu}_\mu\text{b}\bar{\text{b}} \text{H}$ is considered, and hence all interference, off-shell, and non-resonant contributions are taken into account. The electroweak corrections turn out to be below one per cent for the integrated cross section but can exceed $10\%$ in certain phase-space regions. Read More

We present a state-of-the-art calculation of the next-to-leading-order electroweak corrections to ZZ production, including the leptonic decays of the Z bosons into $\mu^+\mu^-\mathrm{e}^+\mathrm{e}^-$ or $\mu^+\mu^-\mu^+\mu^-$ final states. We use complete leading-order and next-to-leading-order matrix elements for four-lepton production, including contributions of virtual photons and all off-shell effects of Z bosons, where the finite Z-boson width is taken into account using the complex-mass scheme. The matrix elements are implemented into Monte Carlo programs allowing for the evaluation of arbitrary differential distributions. Read More

For the first time full next-to-leading-order electroweak corrections to off-shell vector-boson scattering are presented. The computation features the complete matrix elements, including all non-resonant and off-shell contributions, to the electroweak process $\mathrm{p} \mathrm{p} \to \mu^+ \nu_\mu \mathrm{e}^+ \nu_{\mathrm{e}} \mathrm{j} \mathrm{j}$. It is fully differential, and event selections are applied to the final states such that the predictions can be directly compared to experimental measurements. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We present a consistent renormalization scheme for the CP-conserving Two-Higgs-Doublet Model based on $\overline{MS}$ renormalization of the mixing angles and the soft-$Z_2$-symmetry-breaking scale $M_{sb}$ in the Higgs sector. This scheme requires to treat tadpoles fully consistently in all steps of the calculation in order to provide gauge-independent $S$-matrix elements. We show how bare physical parameters have to be defined and verify the gauge independence of physical quantities by explicit calculations in a general $R_{\xi}$-gauge. Read More

For the first time the next-to-leading-order electroweak corrections to the full off-shell production of two top quarks that decay leptonically are presented. This calculation includes all off-shell, non-resonant, and interference effects for the 6-particle phase space. While the electroweak corrections are below one per cent for the integrated cross section, they reach up to 15% in the high-transverse-momentum region of distributions. Read More

**Authors:**S. Badger

^{1}, J. Bendavid

^{2}, V. Ciulli

^{3}, A. Denner

^{4}, R. Frederix

^{5}, M. Grazzini

^{6}, J. Huston

^{7}, M. Schönherr

^{8}, K. Tackmann

^{9}, J. Thaler

^{10}, C. Williams

^{11}, J. R. Andersen, K. Becker, M. Bell, J. Bellm, E. Bothmann, R. Boughezal, J. Butterworth, S. Carrazza, M. Chiesa, L. Cieri, M. Duehrssen-Debling, G. Falmagne, S. Forte, P. Francavilla, M. Freytsis, J. Gao, P. Gras, N. Greiner, D. Grellscheid, G. Heinrich, G. Hesketh, S. Höche, L. Hofer, T. -J. Hou, A. Huss, J. Isaacson, A. Jueid, S. Kallweit, D. Kar, Z. Kassabov, V. Konstantinides, F. Krauss, S. Kuttimalai, A. Lazapoulos, P. Lenzi, Y. Li, J. M. Lindert, X. Liu, G. Luisoni, L. Lönnblad, P. Maierhöfer, D. Maître, A. C. Marini, G. Montagna, M. Moretti, P. M. Nadolsky, G. Nail, D. Napoletano, O. Nicrosini, C. Oleari, D. Pagani, C. Pandini, L. Perrozzi, F. Petriello, F. Piccinini, S. Plätzer, I. Pogrebnyak, S. Pozzorini, S. Prestel, C. Reuschle, J. Rojo, L. Russo, P. Schichtel, S. Schumann, A. Siódmok, P. Skands, D. Soper, G. Soyez, P. Sun, F. J. Tackmann, E. Takasugi, S. Uccirati, U. Utku, L. Viliani, E. Vryonidou, B. T. Wang, B. Waugh, M. A. Weber, J. Winter, K. P. Xie, C. -P. Yuan, F. Yuan, K. Zapp, M. Zaro

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators. Read More

We present results of the first calculation of next-to-leading-order electroweak corrections to W-boson pair production at the LHC that fully takes into account leptonic W-boson decays and off-shell effects. Employing realistic event selections, we discuss the corrections in situations that are typical for the study of W-boson pairs as a signal process or of Higgs-boson decays $H\to W W^*$, to which W-boson pair production represents an irreducible background. In particular, we compare the full off-shell results, obtained treating the W-boson resonances in the complex-mass scheme, to previous results in the so-called double-pole approximation, which is based on an expansion of the loop amplitudes about the W resonance poles. Read More

We present the Fortran95 program Recola for the perturbative computation of next-to-leading-order transition amplitudes in the Standard Model of particle physics. The code provides numerical results in the 't Hooft-Feynman gauge. It uses the complex-mass scheme and allows for a consistent isolation of resonant contributions. Read More

We present the library Collier for the numerical evaluation of one-loop scalar and tensor integrals in perturbative relativistic quantum field theories. The code provides numerical results for arbitrary tensor and scalar integrals for scattering processes in general quantum field theories. For tensor integrals either the coefficients in a covariant decomposition or the tensor components themselves are provided. Read More

The first complete calculation of the next-to-leading-order electroweak corrections to four-lepton production at the LHC is presented, where all off-shell effects of intermediate Z bosons and photons are taken into account. Focusing on the mixed final state $\mu^+\mu^-e^+e^-$, we study differential cross sections that are particularly interesting for Higgs-boson analyses. The electroweak corrections are divided into photonic and purely weak corrections. Read More

We perform a numerical approximation of coherent sets in finite-dimensional smooth dynamical systems by computing singular vectors of the transfer operator for a stochastically perturbed flow. This operator is obtained by solution of a discretized Fokker-Planck equation. For numerical implementation, we employ spectral collocation methods and an exponential time differentiation scheme. Read More

We analyse the production of a Higgs boson in association with a top--antitop-quark pair in the Standard Model at the LHC. Considering the final state consisting of four b jets, two jets, one identified charged lepton and missing energy, we examine the irreducible background for the production rate and several kinematical distributions. While ttH production and decay is roughly a fourth of the full process for the final state specified above, ttbb production constitutes the main contribution with about $92\%$. Read More

The next-to-leading-order electroweak corrections to $pp\to l^+l^-/\bar\nu\nu+\gamma+X$ production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. Read More

We compute the hadronic production of top-antitop pairs in association with a Higgs boson at next-to-leading-order QCD, including the decay of the top and antitop quark into bottom quarks and leptons. Our computation is based on full leading and next-to-leading-order matrix elements for $e^+ \nu_e \mu^-\bar{\nu}_\mu b \bar{b} H(j)$ and includes all non-resonant contributions, off-shell effects and interferences. Numerical results for the integrated cross section and several differential distributions are given for the LHC operating at 13 TeV using a fixed and a dynamical factorization and renormalization scale. Read More

**Authors:**G. Moortgat-Pick, H. Baer, M. Battaglia, G. Belanger, K. Fujii, J. Kalinowski, S. Heinemeyer, Y. Kiyo, K. Olive, F. Simon, P. Uwer, D. Wackeroth, P. M. Zerwas, A. Arbey, M. Asano, J. Bagger, P. Bechtle, A. Bharucha, J. Brau, F. Brummer, S. Y. Choi, A. Denner, K. Desch, S. Dittmaier, U. Ellwanger, C. Englert, A. Freitas, I. Ginzburg, S. Godfrey, N. Greiner, C. Grojean, M. Grunewald, J. Heisig, A. Hocker, S. Kanemura, K. Kawagoe, R. Kogler, M. Krawczyk, A. S. Kronfeld, J. Kroseberg, S. Liebler, J. List, F. Mahmoudi, Y. Mambrini, S. Matsumoto, J. Mnich, K. Monig, M. M. Muhlleitner, R. Poschl, W. Porod, S. Porto, K. Rolbiecki, M. Schmitt, P. Serpico, M. Stanitzki, O. Stål, T. Stefaniak, D. Stockinger, G. Weiglein, G. W. Wilson, L. Zeune, F. Moortgat, S. Xella

A comprehensive review of physics at an e+e- Linear Collider in the energy range of sqrt{s}=92 GeV--3 TeV is presented in view of recent and expected LHC results, experiments from low energy as well as astroparticle physics.The report focuses in particular on Higgs boson, Top quark and electroweak precision physics, but also discusses several models of beyond the Standard Model physics such as Supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analyzed as well. Read More

We present a calculation of the next-to-leading-order electroweak corrections to W+\gamma\ production, including the leptonic decay of the W boson and taking into account all off-shell effects of the W boson, where the finite width of the W boson is implemented using the complex-mass scheme. Corrections induced by incoming photons are fully included and find particular emphasis in the discussion of phenomenological predictions for the LHC. The corresponding next-to-leading-order QCD corrections are reproduced as well. Read More

We present an analysis of Higgs-boson production in association with a top-quark pair at the LHC investigating in particular the final state consisting of four b jets, two jets, one identified charged lepton and missing energy. We consider the Standard Model prediction in three scenarios, the resonant Higgs-boson plus top-quark-pair production, the resonant production of a top-quark pair in association with a b-jet pair and the full process including all non-resonant and interference contributions. By comparing these scenarios we examine the irreducible background for the production rate and several kinematical distributions. Read More

The Monte Carlo integrator HAWK provides precision predictions for Higgs production at hadron colliders in vector-boson fusion and Higgs strahlung, i.e. in production processes where the Higgs boson is Attached to WeaK bosons. Read More

We compute the next-to-leading order corrections of $O(\alpha_s^2\alpha^3)$ to the hadronic production of two oppositely charged leptons and two hard jets, $p p \to j j l^- l^+$, using Recola and Collier. We include electroweak and QCD corrections at the given order and all off-shell effects. We provide detailed predictions for the LHC operating at 13 TeV and obtain per-cent-level corrections for the total cross section. Read More

We introduce the fortran-library COLLIER for the numerical evaluation of one-loop scalar and tensor integrals in perturbative relativistic quantum field theories. Important features are the implementation of dedicated methods to achieve numerical stability for 3- and 4-point tensor integrals, the support of complex masses for internal particles, and the possibility to choose between dimensional and mass regularization for infrared singularities. COLLIER supports one-loop N-point functions up to currently N=6 and has been tested in various NLO QCD and EW calculations. Read More

We investigate unitarity within the Complex-Mass Scheme, a convenient universal scheme for perturbative calculations involving unstable particles in Quantum Field Theory which guarantees exact gauge invariance. Since this scheme requires to introduce complex masses and complex couplings, the Cutkosky cutting rules, which express perturbative unitarity in theories of stable particles, are no longer valid. We derive corresponding rules for scalar theories with unstable particles based on Veltman's Largest-Time Equation and prove unitarity in this framework. Read More

We present the computer code RECOLA for the computation of EW and QCD amplitudes in the Standard Model at next-to-leading order. One-loop amplitudes are represented as linear combinations of tensor integrals whose coefficients are calculated by means of recursive relations similar to Dyson-Schwinger equations. A novel treatment of colour enables us to recursively construct the colour structure of the amplitude efficiently. Read More

We present results for the electroweak radiative corrections to the production of a leptonically decaying Z boson in association with two jets at the LHC. Tree-level and one-loop amplitudes have been obtained with the computer code Recola for the recursive generation of tree-level and one-loop amplitudes in the Standard Model. The one-loop integrals have been calculated with the tensor-integral library Collier. Read More

**Authors:**S. Alioli, S. Badger, J. Bellm, B. Biedermann, F. Boudjema, G. Cullen, A. Denner, H. van Deurzen, S. Dittmaier, R. Frederix, S. Frixione, M. V. Garzelli, S. Gieseke, E. W. N. Glover, N. Greiner, G. Heinrich, V. Hirschi, S. Hoeche, J. Huston, H. Ita, N. Kauer, F. Krauss, G. Luisoni, D. Maitre, F. Maltoni, P. Nason, C. Oleari, R. Pittau, S. Plaetzer, S. Pozzorini, L. Reina, C. Reuschle, T. Robens, J. Schlenk, M. Schoenherr, F. Siegert, J. F. von Soden-Fraunhofen, F. Tackmann, F. Tramontano, P. Uwer, G. Salam, P. Skands, S. Weinzierl, J. Winter, V. Yundin, G. Zanderighi, M. Zaro

**Category:**High Energy Physics - Phenomenology

We present an update of the Binoth Les Houches Accord (BLHA) to standardise the interface between Monte Carlo programs and codes providing one-loop matrix elements. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We introduce the computer code Recola for the recursive generation of tree-level and one-loop amplitudes in the Standard Model. Tree-level amplitudes are constructed using off-shell currents instead of Feynman diagrams as basic building blocks. One-loop amplitudes are represented as linear combinations of tensor integrals whose coefficients are calculated similarly to the tree-level amplitudes by recursive construction of loop off-shell currents. Read More

Single-jet production with missing transverse momentum is one of the most promising discovery channels for new physics at the LHC. In the Standard Model, Z + jet production with a Z-boson decay into neutrinos leads to this monojet signature. To improve the corresponding Standard Model predictions, we present the calculation of the full next-to-leading-order (NLO) electroweak corrections and a recalculation of the NLO QCD corrections to monojet production at the Tevatron and the LHC. Read More

We present a next-to-leading-order QCD calculation for e+\nu e\mu+\nu\mu jj production in vector-boson fusion, i.e. the scattering of two positively charged W bosons at the LHC. Read More

This document presents an interim framework in which the coupling structure of a Higgs-like particle can be studied. After discussing different options and approximations, recommendations on specific benchmark parametrizations to be used to fit the data are given. Read More

The production of top-antitop-quark pairs at hadron colliders is interesting both in its own right as signal process, but also as background to many searches for new physics. The corresponding predictions aim at the precision level of few per cent, rendering not only the inclusion of radiative corrections of the strong and electroweak interactions relevant, but also of off-shell and finite-width effects originating from the top-quark decays t -> b W -> b l \nu_l / qq'. We report on a calculation for the full process pp -> W^+ W^- b \bar{b} -> \nu_e e^+ \mu^- \nu_\mu b \bar{b} at next-to-leading order QCD and discuss the effects of the finite widths of the top quarks and of the W bosons for selected observables. Read More

**Affiliations:**

^{1}Wurzburg U.,

^{2}Freiburg U.,

^{3}Zurich U.,

^{4}Zurich U.

**Category:**High Energy Physics - Phenomenology

We present details of a calculation of the cross section for hadronic top-antitop production in next-to-leading order (NLO) QCD, including the decays of the top and antitop into bottom quarks and leptons. This calculation is based on matrix elements for \nu e e+ \mu- \bar{\nu}_{\mu}b\bar{b} production and includes all non-resonant diagrams, interferences, and off-shell effects of the top quarks. Such contributions are formally suppressed by the top-quark width and turn out to be small in the inclusive cross section. Read More

**Authors:**J. Alcaraz Maestre, S. Alioli, J. R. Andersen, R. D. Ball, A. Buckley, M. Cacciari, F. Campanario, N. Chanon, G. Chachamis, V. Ciulli, F. Cossutti, G. Cullen, A. Denner, S. Dittmaier, J. Fleischer, R. Frederix, S. Frixione, J. Gao, L. Garren, S. Gascon-Shotkin, N. Greiner, J. P. Guillet, T. Hapola, N. P. Hartland, G. Heinrich, G. Hesketh, V. Hirschi, H. Hoeth, J. Huston, T. Ježo, S. Kallweit, K. Kovařík, F. Krauss, A. Kusina, Z. Liang, P. Lenzi, L. Lönnblad, J. J. Lopez-Villarejo, G. Luisoni, D. Maître, F. Maltoni, P. Mastrolia, P. M. Nadolsky, E. Nurse, C. Oleari, F. I. Olness, G. Ossola, E. Pilon, R. Pittau, S. Plätzer, S. Pozzorini, S. Prestel, E. Re, T. Reiter, T. Riemann, J. Rojo, G. P. Salam, S. Sapeta, I. Schienbein, M. Schönherr, H. Schulz, M. Schulze, M. Schwoerer, P. Skands, J. M. Smillie, G. Somogyi, G. Soyez, T. Stavreva, I. W. Stewart, M. Stockton, Z. Szor, F. J. Tackmann, P. Torrielli, F. Tramontano, M. Tripiana, Z. Trócsányi, M. Ubiali, V. Yundin, S. Weinzierl, J. Winter, J. Y. Yu, K. Zapp

The 2011 Les Houches workshop was the first to confront LHC data. In the two years since the previous workshop there have been significant advances in both soft and hard QCD, particularly in the areas of multi-leg NLO calculations, the inclusion of those NLO calculations into parton shower Monte Carlos, and the tuning of the non-perturbative parameters of those Monte Carlos. These proceedings describe the theoretical advances that have taken place, the impact of the early LHC data, and the areas for future development. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We briefly report on the inclusion of NLO QCD and electroweak corrections to the Higgs-strahlung processes pp/ppbar -> HW/Z -> H+2leptons in the Monte Carlo program HAWK. The electroweak corrections, which are at the level of -(5-10)% for total cross sections, further increase in size with increasing transverse momenta (p_T) in differential cross sections. For instance, for p_{T,H}>200GeV, which is the interesting range at the LHC, the electroweak corrections to WH production reach about -15% for M_H=120GeV. Read More

**Affiliations:**

^{1}Wurzburg U.,

^{2}Freiburg U.,

^{3}Zurich U. and PSI, Villigen,

^{4}RWTH Aachen U.

**Category:**High Energy Physics - Phenomenology

The associate production of Higgs bosons with W or Z bosons, known as Higgs-strahlung, is an important search channel for Higgs bosons at the hadron colliders Tevatron and LHC for low Higgs-boson masses. We refine a previous calculation of next-to-leading-order electroweak corrections (and recalculate the QCD corrections) upon including the leptonic decay of the W/Z bosons, thereby keeping the fully differential information of the 2-lepton + Higgs final state. The gauge invariance of the W/Z-resonance treatment is ensured by the use of the complex-mass scheme. Read More

State-of-the-art predictions for the Higgs-boson production cross section via gluon fusion and for all relevant Higgs-boson decay channels are presented in the presence of a fourth Standard-Model-like fermion generation. The qualitative features of the most important differences to the genuine Standard Model are pointed out, and the use of the available tools for the predictions is described. For a generic mass scale of 400-600 GeV in the fourth generation explicit numerical results for the cross section and decay widths are presented, revealing extremely large electroweak radiative corrections, e. Read More

We present an update of the branching ratios for Higgs-boson decays in the Standard Model. We list results for all relevant branching ratios together with corresponding uncertainties resulting from input parameters and missing higher-order corrections. As sources of parametric uncertainties we include the masses of the charm, bottom, and top quarks as well as the QCD coupling constant. Read More

The first calculation of the next-to-leading-order electroweak corrections to Z-boson + jet hadroproduction including leptonic Z-boson decays is presented, i.e. to the production of a charged lepton--anti-lepton final state in association with one hard jet at the LHC and the Tevatron. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. Baglio, P. Bolzoni, R. Boughezal, O. Brein, C. Collins-Tooth, S. Dawson, S. Dean, A. Denner, S. Farrington, M. Felcini, M. Flechl, D. de Florian, S. Forte, M. Grazzini, C. Hackstein, T. Hahn, R. Harlander, T. Hartonen, S. Heinemeyer, J. Huston, A. Kalinowski, M. Krämer, F. Krauss, J. S. Lee, S. Lehti, F. Maltoni, K. Mazumdar, S. -O. Moch, A. Mück, M. Mühlleitner, P. Nason, C. Neu, C. Oleari, J. Olsen, S. Palmer, F. Petriello, G. Piacquadio, A. Pilaftsis, C. T. Potter, I. Puljak, J. Qian, D. Rebuzzi, L. Reina, H. Rzehak, M. Schumacher, P. Slavich, M. Spira, F. Stöckli, R. S. Thorne, M. Vazquez Acosta, T. Vickey, A. Vicini, D. Wackeroth, M. Warsinsky, M. Weber, G. Weiglein, C. Weydert, J. Yu, M. Zaro, T. Zirke

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the first 10 months' activities of the LHC Higgs Cross Sections Working Group. The main goal of the working group was to present the status-of-art on Higgs Physics at the LHC integrating all new results that have appeared in the last few years. The Report is more than a mere collection of the proceedings of the general meetings. Read More

Top-antitop quark pairs belong to the most abundantly produced and precisely measurable heavy-particle signatures at hadron colliders and allow for crucial tests of the Standard Model and new-physics searches. Here we report on the calculation of the next-to-leading order (NLO) QCD corrections to hadronic WWbb production, which provides a complete NLO description of the production of top-antitop pairs and their subsequent decay into W bosons and bottom quarks, including interferences, off-shell effects, and non-resonant backgrounds. Numerical predictions for the Tevatron and the LHC are presented. Read More

The investigation of weak bosons $V$ ($V=\mathrm{W}^{\pm}$, $\mathrm{Z}$) produced with or without associated hard QCD jets will be of great phenomenological interest at the LHC. Owing to the large cross sections and the clean decay signatures of the vector bosons, weak-boson production can be used to monitor and calibrate the luminosity of the collider, to constrain the PDFs, or to calibrate the detector. Moreover, the $Z$+jet(s) final state constitutes an important background to a large variety of signatures of physics beyond the Standard Model. Read More

We summarise predictions for top anti-top bottom anti-bottom (tTbB) production at the LHC in next-to-leading order QCD. The precise description of this background process is a prerequisite to observe associated top anti-top Higgs production in the H -> bottom anti-bottom decay channel. The one-loop amplitudes are computed using Feynman diagrams and numerical tensor reduction. Read More

We provide a complete set of results for the scalar 4-point function appearing in one-loop calculations in QCD, QED, the electroweak Standard Model and popular extensions thereof. Complex internal masses, which are needed for calculations involving unstable particles, are supported throughout, whereas complex momenta are not supported. In particular, for the most general, regular case we present two independent results in terms of 72 and 32 dilogarithms. Read More

**Authors:**T. Binoth, G. Dissertori, J. Huston, R. Pittau, J. R. Andersen, J. Archibald, S. Badger, R. D. Ball, G. Bevilacqua, I. Bierenbaum, T. Binoth, F. Boudjema, R. Boughezal, A. Bredenstein, R. Britto, M. Campanelli, J. Campbell, L. Carminati, G. Chachamis, V. Ciulli, G. Cullen, M. Czakon, L. Del Debbio, A. Denner, G. Dissertori, S. Dittmaier, S. Forte, R. Frederix, S. Frixione, E. Gardi, M. V. Garzelli, S. Gascon-Shotkin, T. Gehrmann, A. Gehrmann-De Ridder, W. Giele, T. Gleisberg, E. W. N. Glover, N. Greiner, A. Guffanti, J. -Ph. Guillet, A. van Hameren, G. Heinrich, S. Hoeche, M. Huber, J. Huston, M. Jaquier, S. Kallweit, S. Karg, N. Kauer, F. Krauss, J. I. Latorre, A. Lazopoulos, P. Lenzi, G. Luisoni, R. Mackeprang, L. Magnea, D. Maitre, D. Majumder, I. Malamos, F. Maltoni, K. Mazumdar, P. Nadolsky, P. Nason, C. Oleari, F. Olness, C. G. Papadopoulos, G. Passarino, E. Pilon, R. Pittau, S. Pozzorini, T. Reiter, J. Reuter, M. Rodgers, G. Rodrigo, J. Rojo, G. Sanguinetti, F. -P. Schilling, M. Schumacher, S. Schumann, R. Schwienhorst, P. Skands, H. Stenzel, F. Stoeckli, R. Thorne, M. Ubiali, P. Uwer, A. Vicini, M. Warsinsky, G. Watt, J. Weng, I. Wigmore, S. Weinzierl, J. Winter, M. Worek, G. Zanderighi

**Category:**High Energy Physics - Phenomenology

This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009. Read More

We present a complete calculation of the electroweak O(alpha^3 alpha_s) corrections to three-jet production and related event-shape observables at electron--positron colliders. The Z-boson resonance is described within the complex-mass scheme, rendering the calculation valid both in the resonance and off-shell regions. Higher-order initial-state radiation is included in the leading-logarithmic approximation. Read More

The next-to-leading order (NLO) QCD corrections to top anti-top bottom anti-bottom (tTbB) production at the LHC reveal that the scale choice adopted in previous lowest-order simulations underestimates the tTbB cross section by a factor two. We discuss a new dynamical scale that stabilizes the perturbative predictions and describe the impact of the corrections on the shape of distributions. We also account for the techniques employed to compute the six-particle one-loop amplitudes with high CPU efficiency. Read More

We report on a recent calculation of the electroweak O(\alpha^3\alpha_s) corrections to 3-jet production and related event-shape observables at e+e- colliders. The calculation properly accounts for the experimental photon isolation criteria and for the corrections to the total hadronic cross section. Corrections to the normalised event-shape distributions, which are exemplarily discussed here for the thrust distribution at LEP and linear-collider energies, turn out to be at the few-per-cent level and show remnants of the radiative return to the Z pole even after inclusion of appropriate cuts. Read More

We present predictions for top anti-top bottom anti-bottom production at the LHC in next-to-leading order QCD. The precise description of this background process is a prerequisite to observe associated top anti-top Higgs production in the Higgs -> bottom anti-bottom decay channel and to directly measure the top-quark Yukawa coupling at the LHC. The leading-order cross section is extremely sensitive to scale variations. Read More