A. Burenkov - National Nuclear Research University, MEPhI, Russia

A. Burenkov
Are you A. Burenkov?

Claim your profile, edit publications, add additional information:

Contact Details

A. Burenkov
National Nuclear Research University, MEPhI, Russia

Pubs By Year

Pub Categories

Physics - Instrumentation and Detectors (25)
High Energy Physics - Experiment (23)
Nuclear Experiment (17)
Cosmology and Nongalactic Astrophysics (14)
Astrophysics of Galaxies (8)
Instrumentation and Methods for Astrophysics (6)
High Energy Astrophysical Phenomena (5)
Physics - Data Analysis; Statistics and Probability (2)
Solar and Stellar Astrophysics (1)
Physics - Atomic Physics (1)
Physics - Medical Physics (1)
High Energy Physics - Phenomenology (1)

Publications Authored By A. Burenkov

A SensL MicroFC-SMT-60035 6x6 mm$^2$ silicon photo-multiplier coated with a NOL-1 wavelength shifter have been tested in the liquid xenon to detect the 175-nm scintillation light. For comparison, a Hamamatsu vacuum ultraviolet sensitive MPPC VUV3 3x3 mm$^2$ was tested under the same conditions. The photodetection efficiency of $13. Read More

We present the results of the long-term (20-year period, from 1996 to 2015) optical spectral monitoring of the Seyfert 1 galaxy NGC 7469. The variation in the light-curves of the broad He II {\lambda}4686A H{\beta} and H{\alpha} lines, and the continuum at 5100A and 6300A have been explored. The maximum of activity was in 1998, and the variability in the continuum and lines seems to have two periods of around 1200 and 2600 days, however these periodicities should be taken with caution because of the red-noise. Read More

Krypton-85 is an anthropogenic beta-decaying isotope which produces low energy backgrounds in dark matter and neutrino experiments, especially those based upon liquid xenon. Several technologies have been developed to reduce the Kr concentration in such experiments. We propose to augment those separation technologies by first adding to the xenon an 85Kr-free sample of krypton in an amount much larger than the natural krypton that is already present. Read More

The EXO-200 Collaboration is searching for neutrinoless double beta decay using a liquid xenon (LXe) time projection chamber. This measurement relies on modeling the transport of charge deposits produced by interactions in the LXe to allow discrimination between signal and background events. Here we present measurements of the transverse diffusion constant and drift velocity of electrons at drift fields between 20~V/cm and 615~V/cm using EXO-200 data. Read More

We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548. This includes 12 years of new unpublished observations (2003 to 2015). We compiled about 1600 H$\beta$ spectra and analyzed the long-term spectral variations of the 5100 \AA\ continuum and the H$\beta$ line. Read More

The energy resolution of the EXO-200 detector is limited by electronics noise in the measurement of the scintillation response. Here we present a new technique to extract optimal scintillation energy measurements for signals split across multiple channels in the presence of correlated noise. The implementation of these techniques improves the energy resolution of the detector at the neutrinoless double beta decay Q-value from $\left[1. Read More

Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ray flares and they have attracted considerable attention, as they could allow one to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C279 is one of the most prominent examples showing this behaviour. Read More

A search for Lorentz- and CPT-violating signals in the double beta decay spectrum of $^{136}$Xe has been performed using an exposure of 100 kg$\cdot$yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of $-2.65 \times 10^{-5 } \; \textrm{GeV} < \mathring{a}^{(3)}_{\text{of}} < 7. Read More

We report the results of the first long-term (1990-2014) optical spectro-photometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift high-luminosity radio-quiet quasar. In the monitored period the continua and H$\gamma$ fluxes changed for around two times, while the H$\beta$ flux changed around 1.4 times. Read More

As neutrinoless double-beta decay experiments become more sensitive and intrinsic radioactivity in detector materials is reduced, previously minor contributions to the background must be understood and eliminated. With this in mind, cosmogenic backgrounds have been studied with the EXO-200 experiment. Using the EXO-200 TPC, the muon flux (through a flat horizontal surface) underground at the Waste Isolation Pilot Plant (WIPP) has been measured to be {\Phi} = 4. Read More

Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays.Using both modeled and observed AGN light curves we apply Gaussian-kernel based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. Read More

EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of $^{136}$Xe to the ground state of $^{136}$Ba. We report here on a search for the two-neutrino double-beta decay of $^{136}$Xe to the first $0^+$ excited state, $0^+_1$, of $^{136}$Ba based on a 100 kg$\cdot$yr exposure of $^{136}$Xe. Using a specialized analysis employing a machine learning algorithm, we obtain a 90% CL half-life sensitivity of $1. Read More

The spectral variability of active galactic nuclei (AGN) is one of their key features that enables us to study in more details the structure of AGN emitting regions. Especially, the broad line profiles, that vary both in flux and shape, give us invaluable information about the kinematics and geometry of the broad line region (BLR) where these lines are originating from. We give here a comparative review of the line shape variability in a sample of five type 1 AGN, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. Read More

The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. Read More

Alpha decays in the EXO-200 detector are used to measure the fraction of charged $^{218}\mathrm{Po}$ and $^{214}\mathrm{Bi}$ daughters created from alpha and beta decays, respectively. $^{222}\mathrm{Rn}$ alpha decays in liquid xenon (LXe) are found to produce $^{218}\mathrm{Po}^{+}$ ions $50.3 \pm 3. Read More

The search for neutrinoless double-beta decay (0{\nu}{\beta}{\beta}) requires extremely low background and a good understanding of their sources and their influence on the rate in the region of parameter space relevant to the 0{\nu}{\beta}{\beta} signal. We report on studies of various {\beta}- and {\gamma}-backgrounds in the liquid- xenon-based EXO-200 0{\nu}{\beta}{\beta} experiment. With this work we try to better understand the location and strength of specific background sources and compare the conclusions to radioassay results taken before and during detector construction. Read More

EXO-200 is a single phase liquid xenon detector designed to search for neutrinoless double-beta decay of $^{136}$Xe. Here we report on a search for various Majoron-emitting modes based on 100 kg$\cdot$yr exposure of $^{136}$Xe. A lower limit of $T^{^{136}Xe}_{1/2} >1. Read More

We investigate a long-term (26 years, from 1987 to 2013) variability in the broad spectral line properties of the radio galaxy Arp 102B, an active galaxy with broad double-peaked emission lines. We use observations presented in Paper I (Shapovalova et al. 2013) in the period from 1987 to 2011, and a new set of observations performed in 2012--2013. Read More

We present the results of the first experimental study of ionization yield of electron recoils with energies below 100 keV produced in liquid xenon by the isotopes: 37Ar, 83mKr, 241Am, 129Xe, 131Xe. It is confirmed by a direct measurement with 37Ar isotope (2.82 keV) that the ionization yield is growing up with the energy decrease in the energy range below ~ 10 keV accordingly to the NEST predictions. Read More

We used the Z-transformed Discrete Correlation Function (ZDCF) and the Stochastic Process Estimation for AGN Reverberation (SPEAR) methods for the time series analysis of the continuum and the H${\alpha}$ and H${\beta}$ line fluxes of a sample of well known type 1 active galactic nuclei (AGNs): Arp 102B, 3C 390.3, NGC 5548, and NGC 4051, where the first two objects are showing double-peaked emission line profiles. The aim of this work is to compare the time lag measurements from these two methods, and check if there is a connection with other emission line properties. Read More

Many extensions of the Standard Model of particle physics suggest that neutrinos should be Majorana-type fermions, but this assumption is difficult to confirm. Observation of neutrinoless double-beta decay ($0\nu \beta \beta$), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with $^{76}$Ge (GERDA experiment) and $^{136}$Xe (KamLAND-Zen and EXO-200 experiments) have established the lifetime of this decay to be longer than $10^{25}$ yr, corresponding to a limit on the neutrino mass of 0. Read More

Here we present results of the long-term (1987-2010) optical spectral monitoring of the broad line radio galaxy Arp 102B, a prototype of active galactic nuclei with the double-peaked broad emission lines, usually assumed to be emitted from an accretion disk. To explore the structure of the broad line region (BLR), we analyze the light curves of the broad H\alpha and H\beta lines and the continuum flux. We aim to estimate the dimensions of the broad-line emitting regions and the mass of the central black hole. Read More

We report on an improved measurement of the 2\nu \beta \beta\ half-life of Xe-136 performed by EXO-200. The use of a large and homogeneous time projection chamber allows for the precise estimate of the fiducial mass used for the measurement, resulting in a small systematic uncertainty. We also discuss in detail the data analysis methods used for double-beta decay searches with EXO-200, while emphasizing those directly related to the present measurement. Read More

The sensitivity of neutrinoless double beta (0n2b) decay experiments is mainly depended on the internal background of a detector which, in its turn, is defined by the purity of material and possibility for selection of background events. The AMoRE (Advanced Mo based Rare process Experiment) collaboration plans to use 40Ca100MoO4 scintillation crystals as a detector for search of 0n2b decay of 100Mo isotope. A purpose of this paper is further investigation of internal background of 40Ca100MoO4 scintillation elements with a low background setup at YangYang underground laboratory. Read More

We present an analysis of new observations of a peculiar galaxy PGC 60020, obtained with the 6-m BTA telescope of the SAO RAS with a multimode SCORPIO instrument. The observational data includes direct images in the B, V, Rc photometric bands and long-slit spectra in the red range (the Ha line spectral region). Based on the analysis of these data it was found that PGC 60020 belongs to the type of classical polar-ring galaxies. Read More

Affiliations: 1National Nuclear Research University, MEPhI, Russia, 2National Nuclear Research University, MEPhI, Russia, 3National Research Centre Kurchatov Institute, Russia, 4National Nuclear Research University, MEPhI, Russia, 5National Nuclear Research University, MEPhI, Russia, 6National Nuclear Research University, MEPhI, Russia, 7National Nuclear Research University, MEPhI, Russia, 8National Nuclear Research University, MEPhI, Russia, 9Petersburg Nuclear Physics Institute, Russia, 10National Nuclear Research University, MEPhI, Russia, 11SSC RF Institute for Theoretical and Experimental Physics, Russia, 12National Nuclear Research University, MEPhI, Russia, 13National Nuclear Research University, MEPhI, Russia, 14National Nuclear Research University, MEPhI, Russia, 15National Nuclear Research University, MEPhI, Russia, 16National Nuclear Research University, MEPhI, Russia, 17National Nuclear Research University, MEPhI, Russia, 18National Nuclear Research University, MEPhI, Russia, 19National Nuclear Research University, MEPhI, Russia, 20National Nuclear Research University, MEPhI, Russia, 21National Nuclear Research University, MEPhI, Russia, 22National Nuclear Research University, MEPhI, Russia, 23National Nuclear Research University, MEPhI, Russia, 24National Nuclear Research University, MEPhI, Russia, 25National Nuclear Research University, MEPhI, Russia, 26National Nuclear Research University, MEPhI, Russia, 27National Research Centre Kurchatov Institute, Russia, 28National Nuclear Research University, MEPhI, Russia, 29National Nuclear Research University, MEPhI, Russia, 30National Nuclear Research University, MEPhI, Russia, 31National Research Centre Kurchatov Institute, Russia, 32National Nuclear Research University, MEPhI, Russia, 33National Research Centre Kurchatov Institute, Russia, 34National Research Centre Kurchatov Institute, Russia, 35National Nuclear Research University, MEPhI, Russia, 36National Nuclear Research University, MEPhI, Russia, 37National Nuclear Research University, MEPhI, Russia, 38National Nuclear Research University, MEPhI, Russia, 39National Nuclear Research University, MEPhI, Russia, 40National Nuclear Research University, MEPhI, Russia, 41National Nuclear Research University, MEPhI, Russia, 42National Research Centre Kurchatov Institute, Russia, 43National Research Centre Kurchatov Institute, Russia, 44National Nuclear Research University, MEPhI, Russia, 45SSC RF Institute for Theoretical and Experimental Physics, Russia

We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental sites: Kalinin Nuclear Power Plant in the Russian Federation and Spallation Neutron Source at the Oak Ridge National Laboratory in the USA. Both sites have advantages as well as limitations. Read More

We present the results of a long-term (1999--2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow line Seyfert 1 (NLS1) galaxies, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Ha, Hb, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Read More

Affiliations: 1Astronomical Institute of Saint-Petersburg State University, Russia, 2Astronomical Institute of Saint-Petersburg State University, Russia, 3Astronomical Institute of Saint-Petersburg State University, Russia, 4Special Astrophysical Observatory, Russian Academy of Sciences, Russia

This paper is devoted to the analysis of new observational data for the group of galaxies NGC 7465/64/63, which were obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) with the multimode instrument SCORPIO and the Multi Pupil Fiber Spectrograph. For one of group members (NGC 7465) the presence of a polar ring was suspected. Large-scale brightness distributions, velocity and velocity dispersion fields of the ionized gas for all three galaxies as well as line-of-sight velocity curves on the basis of emission and absorption lines and a stellar velocity field in the central region for NGC 7465 were constructed. Read More

We present preliminary results of the long term spectral monitoring of two active galactic nuclei with different broad line shapes: Ark 564 and Arp 102B. Ark 564 is a bright nearby narrow line Syfert 1 (NLS1) galaxy with relatively narrow permitted optical emission lines and a high FeII/H${\beta}$ ratio, while Arp 102B is a nearby broad-line radio galaxy with broad double-peaked Balmer emission lines. The spectra of Ark 564 were observed during 11-year period (1999-2009) and the spectra of Arp 102B in the 12-year period (1998-2009), with SAO 6-m and 1-m telescopes (Russia) and the GHAO 2. Read More

We studied the application of statistical reconstruction algorithms, namely maximum likelihood and least squares methods, to the problem of event reconstruction in a dual phase liquid xenon detector. An iterative method was developed for in-situ reconstruction of the PMT light response functions from calibration data taken with an uncollimated gamma-ray source. Using the techniques described, the performance of the ZEPLIN-III dark matter detector was studied for 122 keV gamma-rays. Read More

ZEPLIN-III is a two-phase xenon direct dark matter experiment located at the Boulby Mine (UK). After its first science run in 2008 it was upgraded with: an array of low background photomultipliers, a new anti-coincidence detector system with plastic scintillator and an improved calibration system. After 319 days of data taking the second science run ended in May 2011. Read More

Plastic scintillators are widely used in industry, medicine and scientific research, including nuclear and particle physics. Although one of their most common applications is in neutron detection, experimental data on their response to low-energy nuclear recoils are scarce. Here, the relative scintillation efficiency for neutron-induced nuclear recoils in a polystyrene-based plastic scintillator (UPS-923A) is presented, exploring recoil energies between 125 keV and 850 keV. Read More

We present an experimental study of single electron emission in ZEPLIN-III, a two-phase xenon experiment built to search for dark matter WIMPs, and discuss applications enabled by the excellent signal-to-noise ratio achieved in detecting this signature. Firstly, we demonstrate a practical method for precise measurement of the free electron lifetime in liquid xenon during normal operation of these detectors. Then, using a realistic detector response model and backgrounds, we assess the feasibility of deploying such an instrument for measuring coherent neutrino-nucleus elastic scattering using the ionisation channel in the few-electron regime. Read More

We report the observation of two-neutrino double-beta decay in Xe-136 with T_1/2 = 2.11 +- 0.04 (stat. Read More

ZE3RA is the software package responsible for processing the raw data from the ZEPLIN-III dark matter experiment and its reduction into a set of parameters used in all subsequent analyses. The detector is a liquid xenon time projection chamber with scintillation and electroluminescence signals read out by an array of 31 photomultipliers. The dual range 62-channel data stream is optimised for the detection of scintillation pulses down to a single photoelectron and of ionisation signals as small as those produced by single electrons. Read More

Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keVnr (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were compared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Read More

A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon TPC of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute (SLPM) of xenon gas with 750 torr differential pressure. Read More

The ZEPLIN-III experiment is operating in its second phase at the Boulby Underground Laboratory in search of dark matter WIMPs. The major upgrades to the instrument over its first science run include lower background photomultiplier tubes and installation of a plastic scintillator veto system. Performance results from the veto detector using calibration and science data in its first six months of operation in coincidence with ZEPLIN-III are presented. Read More

A study of the variability of the broad emission-line parameters of 3C390.3, an active galaxy with the double-peaked emission-line profiles, is presented. We give a detail analysis of variation in the broad Ha and Hb profiles, the ratios, and the Balmer decrement of different line segments. Read More


Does the void environment have a sizable effect on the evolution of dwarf galaxies? If yes, the best probes should be the most fragile least massive dwarfs. We compiled a sample of about one hundred dwarfs with M_B in the range -12 to -18 mag, falling within the nearby Lynx-Cancer void. The goal is to study their evolutionary parameters -- gas metallicity and gas mass-fraction, and to address the epoch of the first substantial episode of Star Formation. Read More

We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating 148Gd onto a silicon {\alpha}-particle detector and vapor depositing a layer of BaF2 over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+ ions from the BaF2 layer and emit them in the surrounding environment. Read More

The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomultipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. Read More

We present new spectral (FPI and long-slit) data on the Eastern optical filament of the well known radionebula W50 associated with SS433. We find that on sub-parsec scales different emission lines are emitted by different regions with evidently different physical conditions. Kinematical properties of the ionized gas show evidence for moderately high (V ~ 100 km/s) supersonic motions. Read More