A. Barnes - Aston University Birmingham

A. Barnes
Are you A. Barnes?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Barnes
Affiliation
Aston University Birmingham
City
Birmingham
Country
United Kingdom

Pubs By Year

External Links

Pub Categories

 
General Relativity and Quantum Cosmology (10)
 
Astrophysics of Galaxies (9)
 
Astrophysics (6)
 
Nuclear Experiment (4)
 
High Energy Physics - Experiment (3)
 
Physics - Instrumentation and Detectors (2)
 
Solar and Stellar Astrophysics (2)
 
Physics - Strongly Correlated Electrons (1)
 
Cosmology and Nongalactic Astrophysics (1)
 
High Energy Physics - Theory (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)
 
Computer Science - Computational Engineering; Finance; and Science (1)
 
Computer Science - Cryptography and Security (1)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (1)

Publications Authored By A. Barnes

In the electrical grid, the distribution system is themost vulnerable to severe weather events. Well-placed and coordinatedupgrades, such as the combination of microgrids, systemhardening and additional line redundancy, can greatly reduce thenumber of electrical outages during extreme events. Indeed, ithas been suggested that resilience is one of the primary benefitsof networked microgrids. Read More

2017May
Affiliations: 1School of Physics and Astronomy, Queen Mary University of London, 2School of Physics and Astronomy, Queen Mary University of London, 3University College London, 4University College London, 5Astrophysics Research Institute, Liverpool John Moores University, 6Astrophysics Research Institute, Liverpool John Moores University, 7Max-Planck Institute for Extraterrestrial Physics, 8INAF-Osservatorio Astrofisico di Arcetri, 9Institut de Plan etologie et d'Astrophysique de Grenoble

Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the Solar System may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. The aim of this project is to determine the 14N/15N ratio towards a sample of cold, massive dense cores at the initial stages in their evolution. Read More

The H2O Southern Galactic Plane Survey (HOPS) has mapped 100 square degrees of the Galactic plane for water masers and thermal molecular line emission using the 22-m Mopra telescope. We describe the automated spectral-line fitting pipelines used to determine the properties of emission detected in HOPS datacubes, and use these to derive the physical and kinematic properties of gas in the survey. A combination of the angular resolution, sensitivity, velocity resolution and high critical density of lines targeted make the HOPS data cubes ideally suited to finding precursor clouds to the most massive and dense stellar clusters in the Galaxy. Read More

The inner few hundred parsecs of the Milky Way harbours gas densities, pressures, velocity dispersions, an interstellar radiation field and a cosmic ray ionisation rate orders of magnitude higher than the disc; akin to the environment found in star-forming galaxies at high-redshift. Previous studies have shown that this region is forming stars at a rate per unit mass of dense gas which is at least an order of magnitude lower than in the disc, potentially violating theoretical predictions. We show that all observational star formation rate diagnostics - both direct counting of young stellar objects and integrated light measurements - are in agreement within a factor two, hence the low star formation rate is not the result of the systematic uncertainties that affect any one method. Read More

2017Jan
Authors: GlueX Collaboration, H. Al Ghoul, E. G. Anassontzis, A. Austregesilo, F. Barbosa, A. Barnes, T. D. Beattie, D. W. Bennett, V. V. Berdnikov, T. Black, W. Boeglin, W. J. Briscoe, W. K. Brooks, B. E. Cannon, O. Chernyshov, E. Chudakov, V. Crede, M. M. Dalton, A. Deur, S. Dobbs, A. Dolgolenko, M. Dugger, R. Dzhygadlo, H. Egiyan, P. Eugenio, C. Fanelli, A. M. Foda, J. Frye, S. Furletov, L. Gan, A. Gasparian, A. Gerasimov, N. Gevorgyan, K. Goetzen, V. S. Goryachev, L. Guo, H. Hakobyan, J. Hardin, A. Henderson, G. M. Huber, D. G. Ireland, M. M. Ito, N. S. Jarvis, R. T. Jones, V. Kakoyan, M. Kamel, F. J. Klein, R. Kliemt, C. Kourkoumeli, S. Kuleshov, I. Kuznetsov, M. Lara, I. Larin, D. Lawrence, W. I. Levine, K. Livingston, G. J. Lolos, V. Lyubovitskij, D. Mack, P. T. Mattione, V. Matveev, M. McCaughan, M. McCracken, W. McGinley, J. McIntyre, R. Mendez, C. A. Meyer, R. Miskimen, R. E. Mitchell, F. Mokaya, K. Moriya, F. Nerling, G. Nigmatkulov, N. Ochoa, A. I. Ostrovidov, Z. Papandreou, M. Patsyuk, R. Pedroni, M. R. Pennington, L. Pentchev, K. J. Peters, E. Pooser, B. Pratt, Y. Qiang, J. Reinhold, B. G. Ritchie, L. Robison, D. Romanov, C. Salgado, R. A. Schumacher, C. Schwarz, J. Schwiening, A. Yu. Semenov, I. A. Semenova, K. K. Seth, M. R. Shepherd, E. S. Smith, D. I. Sober, A. Somov, S. Somov, O. Soto, N. Sparks, M. J. Staib, J. R. Stevens, I. I. Strakovsky, A. Subedi, V. Tarasov, S. Taylor, A. Teymurazyan, I. Tolstukhin, A. Tomaradze, A. Toro, A. Tsaris, G. Vasileiadis, I. Vega, N. K. Walford, D. Werthmuller, T. Whitlatch, M. Williams, E. Wolin, T. Xiao, J. Zarling, Z. Zhang, B. Zihlmann, V. Mathieu, J. Nys

We report measurements of the photon beam asymmetry $\Sigma$ for the reactions $\vec{\gamma}p\to p\pi^0$ and $\vec{\gamma}p\to p\eta $ from the GlueX experiment using a 9 GeV linearly-polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $\pi^0$ measurements and are the first $\eta$ measurements in this energy regime. The results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models. Read More

The environment within the inner few hundred parsecs of the Milky Way, known as the "Central Molecular Zone" (CMZ), harbours densities and pressures orders of magnitude higher than the Galactic Disc; akin to that at the peak of cosmic star formation (Kruijssen & Longmore 2013). Previous studies have shown that current theoretical star-formation models under-predict the observed level of star-formation (SF) in the CMZ by an order of magnitude given the large reservoir of dense gas it contains. Here we explore potential reasons for this apparent dearth of star formation activity. Read More

High-mass stars shape the interstellar medium in galaxies, and yet, largely because the initial conditions are poorly constrained, we do not know how they form. One possibility is that high-mass stars and star clusters form at the junction of filamentary networks, referred to as 'hubs'. In this letter we present the complex anatomy of a protocluster hub within an Infrared Dark Cloud (IRDC), G035. Read More

Infrared Dark Clouds (IRDCs) are cold, dense regions that are usually found within Giant Molecular Clouds (GMCs). Ongoing star formation within IRDCs is typically still deeply embedded within the surrounding molecular gas. Characterising the properties of relatively quiescent IRDCs may therefore help us to understand the earliest phases of the star formation process. Read More

Using spectral-line observations of HNCO, N2H+, and HNC, we investigate the kinematics of dense gas in the central ~250 pc of the Galaxy. We present SCOUSE (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, SCOUSE accurately describes the {l, b, v_LSR} distribution of CMZ gas, which is asymmetric about Sgr A* in both position and velocity. Read More

The formation environment of stars in massive stellar clusters is similar to the environment of stars forming in galaxies at a redshift of 1 - 3, at the peak star formation rate density of the Universe. As massive clusters are still forming at the present day at a fraction of the distance to high-redshift galaxies they offer an opportunity to understand the processes controlling star formation and feedback in conditions similar to those in which most stars in the Universe formed. Here we describe a system of massive clusters and their progenitor gas clouds in the centre of the Milky Way, and outline how detailed observations of this system may be able to: (i) help answer some of the fundamental open questions in star formation and (ii) quantify how stellar feedback couples to the surrounding interstellar medium in this high-pressure, high-redshift analogue environment. Read More

2015Dec

The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of $\pi^{0}$, $\eta$ and $\omega$ mesons. Read More

Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant {\Lambda}) with constant non-zero Weyl eigenvalus are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2{\Lambda}/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. Read More

We propose to enhance the kaon identification capabilities of the GlueX detector by constructing an FDIRC (Focusing Detection of Internally Reflected Cherenkov) detector utilizing the decommissioned BaBar DIRC components. The GlueX FDIRC would significantly enhance the GlueX physics program by allowing one to search for and study hybrid mesons decaying into kaon final states. Such systematic studies of kaon final states are essential for inferring the quark flavor content of hybrid and conventional mesons. Read More

AES, Advanced Encryption Standard, can be considered the most widely used modern symmetric key encryption standard. To encrypt/decrypt a file using the AES algorithm, the file must undergo a set of complex computational steps. Therefore a software implementation of AES algorithm would be slow and consume large amount of time to complete. Read More

The primary motivation of the GlueX experiment is to search for and ultimately study the pattern of gluonic excitations in the meson spectrum produced in $\gamma p$ collisions. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons that have both exotic and non-exotic $J^{PC}$, corresponding to $q\bar{q}$ states ($q=u,$ $d,$ or $s$) coupled with a gluonic field. A thorough study of the hybrid spectrum, including the identification of the isovector triplet, with charges 0 and $\pm1$, and both isoscalar members, $|s\bar{s}\ >$ and $|u\bar{u}\ > + |d\bar{d}\ >$, for each predicted hybrid combination of $J^{PC}$, may only be achieved by conducting a systematic amplitude analysis of many different hadronic final states. Read More

The primary motivation of the GlueX experiment is to search for and ultimately study the pattern of gluonic excitations in the meson spectrum produced in gamma p collisions. Recent lattice QCD calculations predict a rich spectrum of hybrid mesons that have both exotic and non-exotic JPC, corresponding to q q-bar (q=u, d, or s) states coupled with a gluonic field. A thorough study of the hybrid spectrum, including the identification of the isovector triplet, with charges 0 and +-1, and both isoscalar members, |s s-bar> and |u u-bar> + |d d-bar>, for each predicted hybrid combination of JPC, may only be achieved by conducting a systematic amplitude analysis of many different hadronic final states. Read More

We report the observation of magnetic and resistive aging in a self assembled nanoparticle system produced in a multilayer Co/Sb sandwich. The aging decays are characterized by an initial slow decay followed by a more rapid decay in both the magnetization and resistance. The decays are large accounting for almost 70% of the magnetization and almost 40% of the resistance for samples deposited at 35 $^oC$. Read More

We present simultaneous high-resolution optical spectroscopy and X-ray data of the X-ray binary system GR Mus (XB1254-690), obtained over a full range of orbital phases. The X-ray observations are used to re-establish the orbital ephemeris for this source. The optical data includes the first spectroscopic detection of the donor star in this system, through the use of the Doppler Tomography technique on the Bowen fluorescence blend (~4630-4650 A). Read More

Phase-resolved medium resolution VLT spectroscopy of the low mass X-ray binary GX9+9 has revealed narrow CIII emission lines that move in phase relative to our new estimate of the ephemeris, and show a velocity amplitude of 230+/-35 km/s. We identify the origin of these lines as coming from the surface of the donor star, thereby providing the first estimate of the mass function of f(M_1)>=0.22M_sun. Read More

In this paper, we report on the magnetic properties of Ba2CoS3, a spin-chain compound recently found to be the first Co2+ containing one-dimensional sulphide to show metallic-like conductivity and negative magnetoresistance. We carried out an in-depth experimental investigation of the local structure of the cobalt atoms, and ab-initio calculations of the resulting electronic configuration of Co2+. From theoretical considerations, the intra-chain coupling was predicted to be antiferromagnetic. Read More

2006Dec
Affiliations: 1Southampton Univ., IAC, 2IAC, 3CfA, 4Southampton Univ., 5SAAO, Southampton Uni, 6Louisiana State Univ., 7ESO
Category: Astrophysics

Phase-resolved high resolution optical spectroscopy has revealed narrow N III and He II emission lines from the soft X-ray transient Aquila X-1 during its 2004 outburst that move as a function of the orbit consistent with the phasing of the donor star. Under the assumption that these lines come from the irradiated side of the donor star, we can constrain its K_2 velocity to >247+/-8 km/s, and derive a mass function of f(M_1)>1.23+/-0. Read More

We present high-resolution optical spectroscopy of the X-ray binary system SS433, obtained over a wide range of orbital phases. The spectra display numerous weak absorption features, and include the clearest example seen to date of those features, resembling a mid-A type supergiant spectrum, that have previously been associated with the mass donor star. However, the new data preclude the hypothesis that these features originate solely within the photosphere of the putative mass donor, indicating that there may be more than one region within the system producing an A supergiant-like spectrum, probably an accretion disc wind. Read More

SS433 is the prototype microquasar in the Galaxy and may even be analogous to the ULX sources if the jets' kinetic energy is taken into account. However, in spite of 20 years of study, our constraints on the nature of the binary system are extremely limited as a result of the difficulty of locating spectral features that can reveal the nature and motion of the mass donor. Newly acquired, high resolution blue spectra taken when the (precessing) disc is edge-on suggest that the binary is close to a common-envelope phase, and hence providing kinematic constraints is extremely difficult. Read More

Spacetimes in which the electric part of the Weyl tensor vanishes (relative to some timelike unit vector field) are said to be purely magnetic. Examples of purely magnetic spacetimes are known and are relatively easy to construct, if no restrictions are placed on the energy-momentum tensor. However it has long been conjectured that purely magnetic vacuum spacetimes (with or without a cosmological constant) do not exist. Read More

2003Oct
Affiliations: 1University of Texas at Austin, 2Southampton University, 3Keele University, 4Southampton University, 5Harvard Smithsonian CfA, 6ESO, 7IAC
Category: Astrophysics

We present WHT and VLT spectroscopy of MM Ser, the optical counterpart to Ser X-1. We deblend the red spectra of the two close stars identified by Wachter (1997) and show that the brighter of the two is responsible for the Halpha and HeI emission, hence confirming that this is the true counterpart of the X-ray source. We also identify several HeII and NIII lines in the blue spectrum. Read More

Garcia and Campuzano claim to have found a previously overlooked family of stationary and axisymmetric conformally flat spacetimes, contradicting an old theorem of Collinson. In both these papers it is tacitly assumed that the isometry group is orthogonally transitive. Under the same assumption, we point out here that Collinson's result still holds if one demands the existence of an axis of symmetry on which the axial Killing vector vanishes. Read More

Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. Read More

Some years ago Koutras presented a method of constructing a conformal Killing tensor from a pair of orthogonal conformal Killing vectors. When the vector associated with the conformal Killing tensor is a gradient, a Killing tensor (in general irreducible) can then be constructed. In this paper it is shown that the severe restriction of orthogonality is unnecessary and thus it is possible that many more Killing tensors can be constructed in this way. Read More

2002Jan
Authors: A. K. J. Barnes1
Affiliations: 1U. of Southampton

An analysis of CPN models is given in terms of general coordinates or arbitrary interpolating fields.Only closed expressions made from simple functions are involved.Special attention is given to CP2 and CP4. Read More

Ricci collineations and Ricci inheritance collineations of Friedmann-Robertson-Walker spacetimes are considered. When the Ricci tensor is non-degenerate, it is shown that the spacetime always admits a fifteen parameter group of Ricci inheritance collineations; this is the maximal possible dimension for spacetime manifolds. The general form of the vector generating the symmetry is exhibited. Read More

Lie transformation groups containing a one-dimensional subgroup acting cyclically on a manifold are considered. The structure of the group is found to be considerably restricted by the existence of a one-dimensional subgroup whose orbits are circles. The results proved do not depend on the dimension of the manifold nor on the existence of a metric, but merely on the fact that the Lie group acts globally on the manifold. Read More

The conformal Killing equations for the most general (non-plane wave) conformally flat pure radiation field are solved to find the conformal Killing vectors. As expected fifteen independent conformal Killing vectors exist, but in general the metric admits no Killing or homothetic vectors. However for certain special cases a one-dimensional group of homotheties or motions may exist and in one very special case, overlooked by previous investigators, a two-dimensional homethety group exists. Read More

2000Nov
Authors: Alan Barnes1
Affiliations: 1Aston University Birmingham

In a recent paper Carot et al. considered the definition of cylindrical symmetry as a specialisation of the case of axial symmetry. One of their propositions states that if there is a second Killing vector, which together with the one generating the axial symmetry, forms the basis of a two-dimensional Lie algebra, then the two Killing vectors must commute, thus generating an Abelian group. Read More

2000Apr

In a recent paper Carot et al. considered carefully the definition of cylindrical symmetry as a specialisation of the case of axial symmetry. One of their propositions states that if there is a second Killing vector, which together with the one generating the axial symmetry, forms the basis of a two-dimensional Lie algebra, then the two Killing vectors must commute, thus generating an Abelian group. Read More