A. Alberca

A. Alberca
Are you A. Alberca?

Claim your profile, edit publications, add additional information:

Contact Details

A. Alberca

Pubs By Year

Pub Categories

Physics - Strongly Correlated Electrons (8)
Physics - Materials Science (5)
Physics - Superconductivity (2)
Physics - Mesoscopic Systems and Quantum Hall Effect (1)

Publications Authored By A. Alberca

$\mathrm{La_{1.85}Sr_{0.15}CuO_4}$/$\mathrm{La_2CuO_4}$ (LSCO15/LCO) bilayers with a precisely controlled thickness of N unit cells (UCs) of the former and M UCs of the latter ([LSCO15\_N/LCO\_M]) were grown on (001)-oriented {\slao} (SLAO) substrates with pulsed laser deposition (PLD). Read More

Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba$_3$TaFe$_3$Si$_2$O$_{14}$ at the Fe $L_{2,3}$ and oxygen $K$ edges. Below $T_N$ ($\approx27K$) we observe the satellite reflections $(0,0,\tau)$, $(0,0,2\tau)$, $(0,0,3\tau)$ and $(0,0,1-3\tau)$ where $\tau \approx 0. Read More

Using resonant soft X-ray techniques we follow the magnetic behavior of a strained epitaxial film of CoCr2O4, a type-II multiferroic. The film is [110]-oriented, such that both the ferroelectric and ferromagnetic moments can coexist in plane. X-ray magnetic circular dichroism (XMCD) is used in scattering and in transmission modes to probe the magnetization of Co and Cr separately. Read More

The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron x-ray scattering provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally active magnetic moments. From the diffuse signal of soft x-ray resonant magnetic scattering, we have measured magnetic correlations in a highly dynamic artificial kagome spin ice with sub-70-nm Permalloy nanomagnets. On comparing experimental scattering patterns with Monte Carlo simulations based on a needle-dipole model, we conclude that kagome ice I phase correlations exist in our experimental system even in the presence of moment fluctuations, which is analogous to bulk spin ice and spin liquid behavior. Read More

Multiferroic properties of orthorhombic HoMnO3 (Pbnm space group) are significantly modified by epitaxial compressive strain along the a-axis. We are able to focus on the effect of strain solely along the a-axis by using an YAlO3 (010) substrate, which has only a small lattice mismatch with HoMnO3 along the other in-plane direction (the c-axis). Multiferroic properties of strained and relaxed HoMnO3 thin films are compared with those reported for bulk, and are found to differ widely. Read More

With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-$T_C$ superconductor $\mathrm{YBa_2Cu_3O_7}$ (YBCO) and the ferromagnet $\mathrm{La_{2/3}Ca_{1/3}MnO_3}$ (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizeable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. Read More

We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low temperatures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1. Read More

With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. Read More

Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO$_3$. An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. Read More