A. Aksoy - Ankara University

A. Aksoy
Are you A. Aksoy?

Claim your profile, edit publications, add additional information:

Contact Details

Name
A. Aksoy
Affiliation
Ankara University
City
Ankara
Country
Turkey

Pubs By Year

External Links

Pub Categories

 
Mathematics - Functional Analysis (12)
 
Mathematics - Metric Geometry (7)
 
Physics - Accelerator Physics (4)
 
Mathematics - Classical Analysis and ODEs (2)
 
High Energy Physics - Experiment (2)
 
Mathematics - Operator Algebras (1)

Publications Authored By A. Aksoy

The theory of compact linear operators acting on a Banach space has such a classical core and is familiar to many. Perhaps lesser known is the characterization theorem of Terzio\u{g}lu for compact maps. In this paper we consider Terzio\u{g}lu's theorem and its consequences. Read More

Online social network analysis has attracted great attention with a vast number of users sharing information and availability of APIs that help to crawl online social network data. In this paper, we study the research studies that are helpful for user characterization as online users may not always reveal their true identity or attributes. We especially focused on user attribute determination such as gender, age, etc. Read More

2016Aug
Authors: The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

In this paper, we consider a condition on subspaces in order to improve bounds given in the Bernstein's Lethargy Theorem (BLT) for Banach spaces. Let $d_1 \geq d_2 \geq \dots d_n \geq \dots > 0$ be an infinite sequence of numbers converging to $0$, and let $Y_1 \subset Y_2 \subset \dots\subset Y_n \subset \dots \subset X$ be a sequence of closed nested subspaces in a Banach space $X$ with the property that $\overline{Y}_{n}\subset Y_{n+1}$ for all $n\ge1$. We prove that for any $c \in (0,1]$, there exists an element $x_c \in X$ such that $$ c d_n \leq \rho(x_c, Y_n) \leq \min (4, \tilde{a}) c\, d_n. Read More

This paper contains two improvements on a theorem of S. N. Bernstein for Banach spaces. Read More

In this paper, we provide a new representation of an $\mathbb R$-tree by using a set of graphs. We have captured the four-point condition from these graphs and identified the radial metric and river metric by some particular graphical representations. In stochastic analysis, these representation theorems are of particular interest in identifying Brownian motions indexed by $\mathbb R$-trees. Read More

In this paper we consider Bernstein's Lethargy Theorem (BLT) in the context of Fr\'{e}chet spaces. Let $X$ be an infinite-dimensional Fr\'echet space and let $\mathcal{V}=\{V_n\}$ be a nested sequence of subspaces of $ X$ such that $ \bar{V_n} \subseteq V_{n+1}$ for any $ n \in \mathbb{N}$ and $ X=\bar{\bigcup_{n=1}^{\infty}V_n}.$ Let $ e_n$ be a decreasing sequence of positive numbers tending to 0. Read More

In this paper we survey some recent results concerning the numerical index $n(\cdot)$ for large classes of Banach spaces, including vector valued $\ell_p$-spaces and $\ell_p$-sums of Banach spaces where $1\leq p < \infty$. In particular by defining two conditions on a norm of a Banach space $X$, namely a Local Characterization Condition (LCC) and a Global Characterization Condition (GCC), we are able to show that if a norm on $X$ satisfies the (LCC), then $n(X) = \displaystyle\lim_m n(X_m).$ For the case in which $ \mathbb{N}$ is replaced by a directed, infinite set $S$, we will prove an analogous result for $X$ satisfying the (GCC). Read More

Turkish Accelerator Center) project is aimed to build an accelerator center in Turkey. The first step of the project is to construct IR-FEL facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is the third generation synchrotron radiation light source that aimed to achieve high brilliance photon beam from low emittance electron beam at 3 GeV. Read More

We present an elementary proof of a general version of Montel's theorem in several variables which is based on the use of tensor product polynomial interpolation. We also prove a Montel-Popoviciu's type theorem for functions $f:\mathbb{R}^d\to\mathbb{R}$ for $d>1$. Furthermore, our proof of this result is also valid for the case $d=1$, differing in several points from Popoviciu's original proof. Read More

In this paper we survey some results on minimality of projections with respect to numerical radius. We note that in the cases $L^p$, $p=1,2,\infty$, there is no difference between the minimality of projections measured either with respect to operator norm or with respect to numerical radius. However, we give an example of a projection from $l^p_3$ onto a two-dimensional subspace which is minimal with respect to norm, but not with respect to numerical radius for $p\neq 1,2,\infty$. Read More

We present an overview of some results about characterization of compactness in which the concept of approximation scheme has had a role. In particular, we present several results that were proved by the second author, jointly with Luther, a decade ago, when these authors were working on a very general theory of approximation spaces. We then introduce and show the basic properties of a new concept of compactness, which was studied by the first author in the eighties, by using a generalized concept of approximation scheme and its associated Kolmogorov numbers, which generalizes the classical concept of compactness. Read More

In a paper published posthumously, P.S. Urysohn constructed a complete, separable metric space that contains an isometric copy of every complete separable metric space, nowadays referred to as the Urysohn universal space. Read More

In this paper we prove the equivalence of definitions for metric trees and for \delta-hyperbolic spaces. We point out how these equivalences can be used to understand the geometric and metric properties of \delta-hyperbolic spaces and its relation to CAT(\kappa) spaces. Read More

Shapiro's lethargy theorem states that if {A_n} is any non-trivial linear approximation scheme on a Banach space X, then the sequences of errors of best approximation E(x,A_n) = \inf_{a \in A_n} ||x - a_n||_X decay almost arbitrarily slowly. Recently, Almira and Oikhberg investigated this kind of result for general approximation schemes in the quasi-Banach setting. In this paper, we consider the same question for F-spaces with non decreasing metric d. Read More

The Drive Beam Linac of the Compact Linear Collider (CLIC) has to accelerate an electron beam with 4.2 A up to 2.4 GeV in almost fully-loaded structures. Read More

We improve upon on a limit theorem for numerical index for large classes of Banach spaces including vector valued $\ell_p$-spaces and $\ell_p$-sums of Banach spaces where $1\leq p \leq \infty$. We first prove $ n_1(X) = \displaystyle \lim_m n_1(X_m)$ for a modified numerical index $n_1(\, .\,)$. Read More

Let $X$ be a reflexive Banach space. In this paper we give a necessary and sufficient condition for an operator $T\in \mathcal{K}(X)$ to have the best approximation in numerical radius from the convex subset $\mathcal{U} \subset \mathcal{K}(X),$ where $\mathcal{K}(X)$ denotes the set of all linear, compact operators from $X$ into $X.$ We will also present an application to minimal extensions with respect to the numerical radius. Read More

Using isometric embedding of metric trees into Banach spaces, this paper will investigate barycenters, type and cotype, and various measures of compactness of metric trees. A metric tree ($T$, $d$) is a metric space such that between any two of its points there is an unique arc that is isometric to an interval in $\mathbb{R}$. We begin our investigation by examining isometric embeddings of metric trees into Banach spaces. Read More

The definition of $n$-width of a bounded subset $A$ in a normed linear space $X$ is based on the existence of $n$-dimensional subspaces. Although the concept of an $n$-dimensional subspace is not available for metric trees, in this paper, using the properties of convex and compact subsets, we present a notion of $n$-widths for a metric tree, called T$n$-widths. Later we discuss properties of T$n$-widths, and show that the compact width is attained. Read More

We will show that a theorem of Rudin \cite{wr1}, \cite{wr}, permits us to determine minimal projections not only with respect to the operator norm but with respect to quasi-norms in operators ideals and numerical radius in many concrete cases. Read More

2009Nov
Affiliations: 1Ankara University, 2Ankara University, 3Ankara University, 4Ankara University, 5Ankara University, 6S. Demirel University, 7Gazi University, 8Gazi University, 9Dumlupinar University, 10Dogus University, 11Nigde University, 12Uludag University

The TAC (Turkish Accelerator Center) IR FEL Oscillator facility, which has been supported by Turkish State Planning Organization (SPO) since 2006, will be based on a 15-40 MeV electron linac accompanying two different undulators with 2.5 cm and 9 cm periods in order to obtain IR FEL ranging between 2-250 microns. The electron linac will consist of two sequenced modules, each housing two 9-cell superconducting TESLA cavities for cw operation. Read More

A metric tree ($M$, $d$), also known as $\mathbb{R}$-trees or $T$-theory, is a metric space such that between any two points there is an unique arc and that arc is isometric to an interval in $\mathbb{R}$. In this paper after presenting some fundamental properties of metric trees and metric segments, we will give a characterization of compact metric trees in terms of metric segments. Two common measures of noncompactness are the ball and set measures, respectively defined as \[ \beta(S) = \inf \{\epsilon \mid S {has a finite} \epsilon {-net in} M\} {and} \] \[ \alpha(S) = \inf\{\epsilon \mid S {has a finite cover of sets of diameter} \leq \epsilon\}. Read More

In this paper we examine the relationship between hyperconvex hulls and metric trees. After providing a linking construction for hyperconvex spaces, we show that the four-point property is inherited by the hyperconvex hull, which leads to the theorem that every complete metric tree is hyperconvex. We also consider some extension theorems for these spaces. Read More